

Ministry of Education and Science of Ukraine

National Aerospace University “Kharkiv Aviation Institute”

Internet of Things

for

Industry and Human Applications

Volume 2

Modelling and Development

Edited by V. S. Kharchenko

Project ERASMUS+ ALIOT

“Internet of Things:

Emerging Curriculum for Industry and Human Applications”

(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP)

2019

UDC62:004=111
I73
Reviewers: Dr. Mario Fusani, ISTI-CNR, Pisa, Italy

Dr. Olga Kordas, KTH University, Stockholm, Sweden
Viktor Kordas, KTH University, Stockholm, Sweden

I73 Internet of Things for Industry and Human Application. In
Volumes 1-3. Volume 2. Modelling and Development /V . S . Kharchenko (ed.) -
Ministry of Education and Science of Ukraine, National Aerospace University
KhAI, 2019. - 547p.

ISBN 978-617-7361-80-9
ISBN 978-617-7361-82-3

Three-volume book contains theoretical materials for lectures and training modules
developed in frameworks of project “Internet of Things: Emerging Curriculum for
Industry and Human Applications /ALIOT” (Project Number: 573818-EPP-1-2016-1-
UK-EPPKA2-CBHE-JP, 2016-2019) funded by EU Program ERASMUS+. Volume 2
describes models, simulation and development techniques for Internet of Things (IoT).
The book consists of 4 parts for corresponding PhD courses: modelling of IoT based
systems (sections 16-19), software defined networks and IoT (sections 20-23),
dependability and security of IoT (sections 24-27), development and implementation of
IoT based systems (sections 28-31). The book prepared by Ukrainian university teams
with support of EU academic colleagues of the ALIOT consortium.

The book is intended for MSc and PhD students studying IoT technologies,
software and computer engineering and science, cyber security. It could be useful for
lecturers of universities and training centers, researchers and developers of IoT
systems.

Fig.: 158. Ref.: 430. Tables: 45.
Approved by Academic Council of National Aerospace University “Kharkiv

Aviation Institute” (record № 4, December 19, 2018).

ISBN 978-617-7361-82-3

© O.V.Drozd, O.O.Illiashenko, V.S.Kharchenko, M.O.Kolisnyk, G.V.Kondratenko,
Yu.P.Kondratenko, O.Yu.Maevskaya, D.A.Maevsky, O.M.Martynyuk, D.S.Mazur, M.V.Nesterov,
A.P.Plakhteyev, V.V.Shkarupylo, Ie.V.Sidenko, I.S.Skarga-Bandurova, V.V.Sklyar,
G.V.Tabunshchyk, M.O.Taranov, A.Y.Velykzhanin, D.D.Uzun, Y.O.Uzun, N.G.Yatskiv,
V.V.Yatskiv, H.A.Zemlianko

This work is subject to copyright. All rights are reserved by the authors, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms, or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed

UDC 62:004=111

Міністерство освіти і науки України
Національний аерокосмічний університет

ім. М. Є. Жуковського «Харківський Авіаційний Інститут”

Інтернет речей
для

індустріальних і гуманітарних застосунків

Том 2

Моделювання і розроблення

Редактор Харченко В.С.

Проект ERASMUS+ ALIOT
 “Інтернет речей: нова освітня програма для потреб

промисловості та суспільства”
(573818-EPP-1-2016-1-UK-EPPKA2-CBHE-JP)

2019

УДК 62:004=111
І73

Рецензенти: Др. Mаріо Фузані, ISTI-CNR, Піза, Італія
Др. Ольга Кордас, KTH University, Стокгольм, Швеція
Віктор Кордас, KTH University, Stockholm, Sweden

І73 Інтернет речей для індустріальних і гуманітарних застосунків. У трьох
томах. Том 2. Моделювання і розроблення / За ред. В. С. Харченка. – Міністер-
ство освіти і науки України, Національний аерокосмічний університет ХАІ,
2019. – 547 с.

ISBN 978-617-7361-80-9
ISBN 978-617-7361-82-3

Книга, що складається з трьох томів, містить теоретичні матеріали для лекцій та
тренінгів, розроблених в рамках проекту Internet of Things: Emerging Curriculum for
Industry and Human Applications / ALIOT, 573818-EPP-1-2016-1-UK-EPPKA2-
CBHE-JP, 2016-2019, що фінансується програмою ЄС ERASMUS +. Том 2 описує
моделі, методи моделювання та розробки для Інтернету речей (IoT). Книга складається
з 4 частин для відповідних докторантських курсів: моделювання систем на основі IoT
(розділи 16-19), програмно-визначувані мережі і IoT (розділи 20-23), надійність і
безпека IoT (розділи 24-27), розроблення і впровадження систем на основі IoT (розділи
28-31).

Книга підготовлена українськими університетськими командами за підтримки
колег з академічних закладів країн ЄС, що входять до консорціуму проекту ALIOT.

Книга призначена для магістрантів і аспірантів, які вивчають технології IoT,
програмну і комп'ютерну інженерію, комп'ютерні науки. Може бути корисною для
викладачів університетів і навчальних центрів, дослідників і розробників систем IoT.

Рис.: 158. Посилань: 430. Таблиць: 45.
Рекомендовано до видання вченою радою Національного аерокосмічного універ-

ситету імені М.Є. Жуковського «Харківський авіаційний інститут» (протокол № 4 від
19 грудня 2018 г.).

УДК 62:004=111
ISBN 978-617-7361-82-3

© О.В.Дрозд, О.О.Ілляшенко, В.С.Харченко, М.О.Колісник, Г.В.Кондратенко,
Ю.П.Кондратенко, О.Ю.Маєвська, Д.А.Маєвській, О.М.Мартинюк, Д.С.Мазур, М.В.Нестеров,
А.П.Плахтєєв, В.В.Шкарапило, Є.В.Сіденко, І.С.Скарга-Бандурова. В.В.Скляр, Г.В.Табунщик,
М.О.Таранов, А.Ю.Великжанін, Д.Д.Узун, Ю.О.Узун, Н.Г.Яцків, В.В.Яцків, Г.А.Землянко

Ця робота захищена авторським правом. Всі права зарезервовані авторами, незалежно
від того, чи стосується це всього матеріалу або його частини, зокрема права на переклади на
інші мови, перевидання, повторне використання ілюстрацій, декламацію, трансляцію,
відтворення на мікрофільмах або будь-яким іншим фізичним способом, а також передачу,
зберігання та електронну адаптацію за допомогою комп'ютерного програмного забезпечен-
ня в будь-якому вигляді, або ж аналогічним або іншим відомим способом, або ж таким, який
буде розроблений в майбутньому.

Contents

3

CONTENTS

PREFACE ... 7

PART V. SIMULATION OF IoT AND IoE-BASED SYSTEMS 14

16. PROGRAM TOOLS FOR THE SMART SYSTEMS

SIMULATION ... 14

16.1 Basic principles of IoT simulations .. 16

16.2 Simulation IoT devices based on Arduino platform 25

16.3 Software development. Arduino C/C++ sketch 31

16.4 Work related analysis ... 36

17. THREE-LEVEL SIMULATION OF IOT/IOE BASED SYSTEMS

WITH THE USE OF UML DIAGRAMS, PETRI NETS AND

TEMPORAL LOGIC ... 41

17.1. Simulation and verification in architecture of IoT and IoE-based

systems with the use of visual UML diagrams 43

17.2 Simulation and verification in behavior of IoT and IoE systems on

the basis of the Queuing Systems and Petri Nets 53

17.3 Simulation and verification of synchronization processes in IoT

and IoE-based systems on the basis of temporal logic 64

17.4 Work related analysis ... 67

18. MARKOV’S MODELLING OF IOT SYSTEMS 76

18.1 Features of Markov’s modeling of IoT systems 78

18.2 Markov’s modeling of IoT systems reliability and availability 85

18.3 Markov’s modeling of IoT systems cyber security and availability

 .. 93

18.4 Semi Markov’s modeling of IoT systems 99

18.5 Work related analysis ... 105

19. INTERACTION SIMULATION FOR IOT SYSTEMS 110

19.1 Interaction in IoT systems .. 112

19.2 Interaction Flow Modelling Language 118

19.3. Case Study ... 119

19.4 Work related analysis ... 131

PART VI. SOFTWARE DEFINED NETWORKS AND IOT 135

20. SOFTWARE DEFINED NETWORKS BASICS 135

Contents

4

20.1 SDN architecture. Fundamental notions, principles and concepts

 .. 137

20.2 An in-depth look at the aspects of implementation. Differentiation

between Control and Data Planes ... 142

20.3 OpenFlow protocol. The basics, peculiarities and limitations 150

20.4 Work related analysis ... 161

21. SDN PROGRAMMING AND SIMULATION OF SDN

COMPOSING, CONFIGURING AND SCALING 165

21.1 On the peculiarities of SDN switches and controllers functioning

and implementation .. 167

21.2 Network programming and testing ... 172

21.3 SDN programming and Python scripting 178

21.4 Work related analysis ... 186

22. ALGORITHMS AND APPLICATIONS FOR UTILIZATION OF

SDN TECHNOLOGY TO IOT .. 194

22.1 Managing the IoT with SDN .. 196

22.2 Smart routing and scheduling ... 198

22.3 Optimization of SDN Traffic Flow for IoT 206

22.4 SDN Performance prediction .. 219

22.5 Work related analysis ... 234

23. SDN IN CONTEXT OF DEVOPS TECHNOLOGY 241

23.1 DevOps technology overview .. 243

23.2 DevSecOpS ... 255

23.3 SDN and DevOpS ... 260

23.4 DevOpS and IoT .. 271

23.5 Work related analysis ... 278

PART VII. DEPENDABLITY AND SECURITY OF IOT 283

24. DEPENDABILITY AND SECURITY MODELS OF IOT 283

24.1. Dependability and security concepts for IoT 285

24.2 Dependability and safety models for IoT 290

24.3 Security models for IoT .. 302

24.4 Work related analysis ... 312

25. SAFETY AND SECURITY MANAGEMENT OF IOT 317

25.1 Safety and security management requirements to IoT 319

25.2 Safety and security life cycle for IoT ... 329

Contents

5

25.3 Review, analysis and testing techniques for IoT 334

25.4 Work related analysis ... 337

26. ASSURANCE CASE FOR IOT ... 341

26.1. Assurance Case fundamentals ... 343

26.2. Safety and security techniques and measures for IoT................ 347

26.3. Security informed and energy efficiency informed Assurance

Case for IoT .. 357

26.4 Work related analysis ... 363

27. SECURITY OF IOT BASED BLOCKCHAIN TECHNOLOGY 368

27.1. Bases of blockchain technology and examples of application .. 370

27.2 Consensus algorithms in blockchain technology 377

27.3 Blockchain technology for the IoT security 384

27.4 Work related analysis ... 394

PART VIII. DEVELOPMENT AND IMPLEMENTATION OF IOT-

BASED SYSTEMS .. 403

28. BASIC CONCEPTS AND APPROACHES TO DEVELOPMENT

AND IMPLEMENTATION OF IOT SYSTEMS 403

28.1 IoT-based system development process 405

28.2 Strategies to planning IoT architectures 413

28.3 The base components of the IoT systems 419

28.4 The IoT development boards and platforms for prototyping 426

28.5 The IoT platforms: types and selection criteria 429

28.6 Work related analysis ... 431

29. MODELS FOR IOT-BASED DEVICES AND TECHNOLOGIES

FOR DATA PROCESSING AND TRANSFER 436

29.1 IoT-based devices: models and network communication protocols

 .. 438

29.2 Technologies for data processing in IoT-based systems 447

29.3 Protocols and standards for data transfer between IoT-based

devices .. 456

29.4 Work related analysis ... 464

30. INTELLIGENT METHODS AND APPROACHES FOR

MANAGEMENT AND LEARNING OF IOT-BASED SYSTEMS . 470

30.1 Management systems and IoT platforms 472

Contents

6

30.2 Multi-agent approach for development and management of IoT

systems ... 482

30.3 Methods and approaches for learning of IoT-based systems 490

30.4 Work related analysis ... 497

31. PROTOTYPING AND RAPID DEVELOPMENT OF IOT

SYSTEMS .. 503

31.1 IoT devices ... 505

31.2 Prototyping and rapid development principles 511

31.3 Cases of IoT systems rapid development 519

31.4 Work related analysis ... 530

Анотації .. 536

Аннотации .. 542

Prefaсe

7

PREFACE

ALIOT ERASMUS+ project. Three-volume book contains

material for lectures and training modules developed during carrying

out of project “Internet of Things: Emerging Curriculum for Industry

and Human Applications /ALIOT1” 1(Project Number: 573818-EPP-1-

2016-1-UK-EPPKA2-CBHE-JP, 2016-2019) funded by EU Program

ERASMUS+. Main ALIOT project objectives are development and

transfer of innovative Internet of Things (IoT) and Internet of

Everything (IoE) related research ideas and practices between the

academic and industrial sectors and for society as whole.

The tasks of the ALIOT project are the following:

1) to introduce a Multi-domain and Integrated Internet of Things

(IoT) programme and develop 4 courses for MSc students:

- MC1 Fundamentals of IoT and IoE,

- MC2 Data science for IoT and IoE,

- MC3 Mobile and hybrid IoT-based computing,

- MC4 IoT technologies for cyber physical systems;

2) to introduce a Multi-Domain and Integrated IoT programme and

develop 4 courses for doctoral students:

- PC1 Simulation of IoT and IoE-based systems,

- PC2 Software defined networks and IoT,

- PC3 Dependability and security of IoT,

- PC4 Development and implementation of IoT-based systems;

3) to establish multi-domain IoT cluster network and develop 6

training courses for human and industry applications:

- ITM1 IoT for smart energy grid,

- ITM 2 IoT for smart building and city,

- ITM 3 IoT for intelligent transport systems,

- ITM 4 IoT for health systems,

- ITM 5 IoT for ecology monitoring systems,

- ITM 6 IoT for industrial systems.

1 The European Commission's support for the production of this publication does

not constitute an endorsement of the contents, which reflect the views only of the

authors, and the Commission cannot be held responsible for any use which may be

made of the information contained therein.

Prefaсe

8

The tasks of the project have been solved by ALIOT consortium of

Ukraine and EU countries universities and organizations:

- Newcastle University (NU), United Kingdom (grant holder and

EU coordinator);

- National Aerospace University "Kharkiv Aviation Institute"

(KhAI), Ukraine (national coordinator);

- Leeds Beckett University (LBU), United Kingdom;

- Coimbra University (CU), Рortugal;

- University КТН, Stockholm, Sweden;

- lnstitute of lnformation Science and Technologies ISTI-CNR,

Pisa, Italy;

- Chernivtsi National University (ChNU), Ukraine;

- East Ukraine National University (EANU), Ukraine;

- Odesa National Polytechnic University (ONPU), Ukraine;

- Ternopil National Economic University (TNEU), Ukraine;

- Petro Mohyla Black Sea National University (PMBSNU),

Mykolaiv, Ukraine;

- Zaporizhzhya National Technical University (ZNTU), Ukraine;

- Pukhov lnstitute for Modelling in Energy Engineering (IPME),

National Academy of Science of Ukraine, Kyiv, Ukraine;

- IT-Alliance (ITA), Ukraine;

- Smart.ME company (SM), Ukraine.

ALIOT books. To assure the ALIOT courses the following

books are edited:

- Three volume multi-book “Internet of Things for Industry and

Human Applications” for theoretical/lecture part of courses:

Volume 1. Fundamentals and Technologies (MSc study),

Volume 2. Modelling and Development (PhD study),

Volume 3. Assessment and Implementation (training modules);

- 4 practicum books for MSc courses:

- 4 practicum books for PhD courses;

- 6 books for domain oriented training modules.

The volumes consists of 14 parts according with list of MSc

(Parts I-IV), PhD (Parts V-VIII) and training (Parts IX-XIV) courses.

Parts are called according with corresponding courses (Parts I-IV as

MC1-MC4, Part V-VIII as PC1-PC14, Parts IX-XIV as ITM1-ITM6).

Prefaсe

9

Parts consist of the sections 1-56 (4 sections for courses MC1-

MC2, MC4, PC1-PC4, ITM1-ITM5; 3 sections MC3, 5 sections for

ITM6). Section 0 introduces into the multi-book.

Contents and authors of the Volume 2. Volume 2 consists of

parts V-VIII, sections 16-31.

PART V. SIMULATION OF IOT AND IOE-BASED

SYSTEMS.

Section 16 is devoted to the description of the general principles of

functioning of the Arduino board and the simulation of its work. The

differences between physical and computer simulation are shown. The

simulation methods that can be applied to the ARDUINO boards are

described. A comparative analysis of various software tools that can be

used for simulation is given. The operation with the PROTEUS

software package is described in detail.

Author of the section 16 are Assoc. Prof., Dr. O. Yu. Maevskaya

(ONPU), Prof., DrS D. A. Maevsky.

Three-level simulation of IoT/IoE based systems in their structure,

behavior and processes of synchronization is considered in section 17.

Visual modeling, simulation and verification of architectures,

functionality and temporal features of IoT/IoE based systems and their

components in static and dynamic modes with the use of UML

diagrams, Petri nets, temporal logic, corresponding methods and tools.

The features of the simulation based on evolutionary genetic and multi-

agent technologies, techniques and tools is suggested.

Authors of the section 17 are Assoc. Prof., Dr. O. M. Martynyuk,

Prof., DrS. O. V. Drozd (ONPU).

Section 18 describes the features of development of Markov and

semi-Markov models for research of the Internet of Things operation

and assessment of availability, cyber security and dependability.

Models are developed for typical IoT devices (switches, hubs, UBS)

and system (Smart Business Centre) as a whole. Markov models have

been used to assess SBC cyber security under DoS/DDoS attacks.

Authors of the section 18 are Assoc. Prof., Dr. M. O. Kolisnyk,

Prof., DrS. V. S. Kharchenko (KhAI)

Section 19 is devoted to the interaction simulation in IoT systems.

In the chapter the common architecture of the IoT systems are

considered as well as patterns of the simulation of the interactions. As

for simulation of the different interactions could be used variety of

Prefaсe

10

techniques and tools, authors suggested several use cases. The use case

with remote laboratory GOLDi demonstrate the usage of the FSM

models and Kripke model, in the use case with smart campus there is

considered implementation of the IFML models for modelling

interactions with the users, for simulation of the cyber-physical systems

could be used digital twins, which was shown in the examples with the

ISTR system.

Author of the section 19 is Prof., Dr. G.V. Tabunshchyk (ZNTU).

PART VI. SOFTWARE DEFINED NETWORKS AND IOT.

Section 20 considers the fundamentals of software-defined

networking (SDN), principles of composition and functioning,

technologies, architectures. The accent is also put on the features of

technology, historical premises that have prompted the emerging of

SDN paradigm. OpenFlow specification evolution process, forming the

basis for granting the unified mechanism of communication between

the controller and switches have been analysed.

Authors of the sections 20 are Dr. V. V. Shkarupylo, MSc student

D. S. Mazur (ZNTU).

In section 21, the principles of software defined networks

programming and simulation are considered. The aspects of

programming have been covered on the basis of Python programming

language. Basic commands for network topology configuration are

given, the commands for resolving the automation tasks in particular.

The tips on Mininet environment and corresponding MiniEdit graphical

tool usage have been provided.

Authors of the section 21 is Dr. V. V. Shkarupylo (ZNTU).

Section 22 deals with a series of research problems related to the

implementing specific QoS models over SDN by developing and

implementing algorithms and approaches supplying efficient operation

of SDN in IoT. Recent trends in algorithms utilization for SDN

technology were analyzed in terms of their suitability for establishing

and maintenance large-scale backbone SDN/OpenFlow networks

within IoT infrastructure. Perspectives on SDN performance prediction

using data fusion technique are discussed.

Authors of the section 22 are Prof., DrS. I. S. Skarga-Bandurova,

PhD student M. V. Nesterov, PhD student A. Y. Velykzhanin (EUNU).

Section 23 focuses on DevOps principles and practices supported

on the well-known platforms, like AWS, MS Azure, Google Cloud, etc.

Prefaсe

11

A brief introduction to the origins of methodology DevOps sets the

scene and explains how and why DevOps has evolved. Interconnection

of DevOps, Software Defined Networks (SDN) and IoT is analysed.

Authors of the section 23 are, Assoc. Prof., Dr. D. D. Uzun,

Y.O. Uzun, Prof., DrS. V. S. Kharchenko (KhAI).

PART VII. DEPENDABLITY AND SECURITY OF IOT.
Dependability and security models for IoT systems are considered

in the section 24. In frame of dependability and security concept we

propose the taxonomy of safety and security requirements, after to

represent dependability, safety and security attributes and risks analysis

fundamentals. Dependability and safety models are mostly quantitative

based on probabilistic analysis of indicators values. Security models are

mostly qualitative based on threats analysis and the attacks scenario.

Authors of the section 24 are Prof., DrS. V. V. Sklyar, Prof., DrS.

V. S. Kharchenko (KhAI).

Section 25 considers safety and security management requirements

including human resource management, configuration management,

tools selection and evaluation, documentation management, and safety

and security assessment. Also V-shape Safety and Security Life Cycle

is represented in details including requirements tracing. Finally, the

main issues of verification techniques including documents review,

static code analysis, functional and structural testing are considered.

The Assurance Case methodology is considered in section 26 as an

integral approach to integrate safety and security requirements and

artefacts. For that, the Assurance Case fundamentals as well as concept

and history are represented. For graphical representation of the

Assurance Case, semi-formal notations such as Claim, Argument and

Evidence (CAE) and Goal Structuring Notation (GSN) are used.

Security informed and energy efficiency informed Assurance Case

consists features appropriated to IoT systems.

Author of the sections 25, 26 is Prof., DrS. V. V. Sklyar (KhAI).

Section 27 considers the basics of blockchain technology and

examples of implementation in the Internet of things. The consensus

algorithms used in the blockchain technology and the principles of

ensuring the Internet of things safety and security using the blockchain

technology are discussed. The advantages and the existing problems of

the blockchain technology integration in the Internet of things are

highlighted. Resolving the security problem at different levels of IoT

Prefaсe

12

application is a more complex issue due to the lack of performance and

high heterogeneity of devices.

Authors of the section 27 are Prof., DrS. V. V. Yatskiv, Ass. Prof.,

Dr. N. G. Yatskiv (TNEU).

PART VIII. DEVELOPMENT AND IMPLEMENTATION

OF IOT-BASED SYSTEMS.

Section 28 deals with a series of research problems related to the

developing IoT architectures, device architectures, and IoT-based

system integration. Efficient strategies and approaches to overcome

essential challenges in the development and implementation of an

efficient IoT solution are considered. The base components of the IoT

systems, phases and deliverables of an IoT technical strategy as well as

selection criteria for IoT platforms deployment, are discussed.

Authors of the section 28 are Prof., DrS. I. S. Skarga-Bandurova,

PhD student A. Y. Velykzhanin (EUNU).

Models for IoT-based devices and technologies for data processing

and transfer are considered in the section 29. This section discusses the

basic principles of constructing information models of IoT-based

devices and tools for their creation, in particular Eclipse Vorto. Also

analyzed network communication protocols for IoT-based devices. In

addition, an important component of the IoT network is the choice of

data processing technologies for IoT based systems and methods of

management and forecasting. The protocols and standards for data

transfer between IoT-based nodes and their cybersecurity are discussed.

Intelligent methods and approaches for management and learning

of IoT-based systems are considered in the section 30. It discusses the

types and capabilities of IoT platforms, multi-criteria approach and soft

computing for choosing the IoT platform. Also analyzed the concept of

multi-agent approach in IoT, in particular, types and characteristics of

agents, communication agents with the external environment and data

transfer techniques between agents. In addition, an important

component of the IoT network is the choice of methods and approaches

for learning of IoT-based systems. Also considered general principles

of M2M learning, self-learning systems and neural networks.

Authors of the sections 29 and 30 are

Prof., DrS. Yu. P. Kondratenko, Ass. Prof., Dr. G. V. Kondratenko,

Ass. Prof., Dr. Ie. V. Sidenko, PhD Student M. O. Taranov

(PMBSNU).

Prefaсe

13

In Section 31 models of information exchange of elements of the

IoT systems are considered. The order of development and fast

prototyping of devices is given. Standard solutions for creation of the

IoT systems, use of virtual devices for software development are

shown. Examples of development and prototyping of the channel of

measurements on the basis of low-resource microcontrollers are given.

Acceleration of development of the IoT device with use of modern

open platforms and libraries of high-level functions is shown.

Author of the section 31 is Assoc. Prof., Dr A. P. Plakhteyev, MSc

student H. Zemlianko (KhAI).

Volumes 1-3 edited by Prof., DrS. V. S. Kharchenko (KhAI).

Camera-ready versions of Volumes 1-3 were prepared by

Dr. O. O. Illiashenko (KhAI).
Acknowledgements. The editor and authors would like to express

their appreciation and gratitude to all colleagues from partner
universities and organizations for discussion, advises and support.

We thank colleagues who develop the project ERASMUS+
ALIOT “Internet of Things: Emerging Curriculum for Industry and
Human Applications” http://aliot.eu.org/ and participate in discussions
of topics related to IoT during a few meetings and schools in Sweden
(Stockholm, December 2016), Ukraine (February 2017, 2018,
Chernivtsi; May 2017, Mykolaiv; May 2018, Kyiv; February 2019,
Ternopil; May 2019, Zaporizhzhya), Portugal (Coimbra, October
2017), United Kingdom (Newcastle-Leeds, July 2018).

We thank participants of International Workshops on Cyber
Physical Systems and Internet of Things Dependability (WS CyberIoT-
DESSERT) at the conferences IDAACS (September 2017, Bucharest,
Romania), DESSERT (May 2018, Kyiv, Ukraine) and monthly Seminar
on Critical Computer Technologies and Systems (CriCTechS, KhAI,
2017-2019) at the Department of Computer Systems, Networks and
Cybersecurity for discussion of preliminary project results in point of
view research, development and education issues.

We would like to thank reviewers of the multi-book:
- Dr. Mario Fusani (ISTI-CNR, Pisa, Italy);
- Dr. Olga Kordas (KTH University, Stockholm, Sweden)
- Senior Project Manager Viktor Kordas (KTH University,

Stockholm, Sweden)
for very helpful advises and valuable recommendations.

http://aliot.eu.org/

16. Program Tools for the smart systems simulation

14

PART V. SIMULATION OF IoT AND IoE-BASED SYSTEMS

16. PROGRAM TOOLS FOR THE SMART SYSTEMS

SIMULATION

Assoc. Prof., Dr O. Yu. Maevskaya, Prof., DrS D. A. Maevsky (ONPU)

Сontents

PREFACE .. 7

Abbreviations .. 14

16.1 Basic principles of IoT simulations ... 16

16.1.1 Classification and terminology. Real-world objects and kinds of

its simulation ... 18

16.1.2 Physical and computer simulations .. 20

16.1.3 Virtual simulation. Common user interaction systems for virtual

simulations ... 22

16.2 Simulation IoT devices based on Arduino platform 25

16.2.1 General information about the Arduino platform 26

16.2.2 Arduino and Arduino-compatible boards 27

16.2.3 Technical characteristics Arduino Mega 28

16.2.4 Inputs and outputs of Arduino Mega 2560. 29

16.3 Software development. Arduino C/C++ sketch 31

16.3.1 General methodology of Arduino sketch working 31

16.3.2 Arduino sketch example ... 34

16.4 Work related analysis .. 36

Conclusions and questions... 37

References ... 38

16. Program Tools for the smart systems simulation

15

Abbreviations

AC – Alternating Current

DC – Direct Current

GUI – Graphical User Interface

IoT – Internet of Things

MQTT – Message Queuing Telemetry Transport

OPC – Open Platform Communications

OPC UA – Open Platform Communications Unified Architecture
REST – REpresentational State Transfer

XML – eXtensible Markup Language

16. Program Tools for the smart systems simulation

16

In this section, we will consider software tools for modeling

smart IOT systems. The terms "modeling" and "model" we use so often

in everyday life that we even do not think what they mean. Everything

seems pretty intuitive and clear. In the headlines of scientific works on

Engineering Sciences, the phrase "models and methods" is used almost

more often than all other. A popular online resource

https://ieeexplore.ieee.org/ produces so more than 1 million 200

thousand results if you specify "Modeling" in the search machine. This

word is the most often found in the titles of the reports at conferences

(more than 900 thousand) and in the titles of articles in magazine (more

than 200 thousand). A part of these publications is about 25% of the

total number of publications posted on this Internet resource.

However, not everyone knows that modeling as a process of

scientific search has its own laws, rules and varieties. These laws and

regulations are the subject of a separate branch of science called

"Theory of Modeling and Simulation" [1, 2, 3, 4]. The main provisions

of this science bring to the exact science elements of the philosophical

thought and try to answer the question, how the world around us with

its models relate to each other. This is a difficult question, but, without

an answer, we risk losing the connection between the real object and its

model. Nobody needs simulation results when the model is not correct,

is not it? Therefore, firstly we will try to understand the terminology

and model types, as well as the differences between physical and

computer modeling.

16.1 Basic principles of IoT simulations

First of all, it should be noted that there are two separate terms in

English – "Modeling" (or the American version - "modelling", with two

letters "l") and "Simulation". These terms are not synonymous in

English and are used to indicate two different processes. According to

the English Wikipedia [5], "Modeling" is the process of creating a

certain model, for instance, mathematical. In this process, for any

natural phenomenon, based on known physical laws, a model is created.

Often this model does not describe the phenomenon as a whole, but

reflects the law of variation of a certain characteristic (parameter) of

this phenomenon. For example, for the process of launching an

artificial satellite vehicle into orbit, such characteristics may be the law

of speed variation of the launch vehicle over time, or the law of altitude

16. Program Tools for the smart systems simulation

17

variation over time. Two separate models are created for these two

parameters. Another example is the transient simulation in electrical

circuits. Here also this process is not modeled completely, to the

contrary we find the change laws over time of certain currents or

voltages acting in this circle.

The result of the process, which in English is referred to "

Modeling", is a certain model. In IoT, it is often a mathematical model,

that is, simply put, a certain formula, equation, or set of equations.The

word "Simulation" in English means the process of practical application

of the developed model. Here mathematical model is forced to work as

a rule, it is done by means of computer facilities. The mathematical

model is implemented in computer software. During the simulation, the

model is substituted with certain values, and the program, according to

the given mathematical equation, so that the result is calculated.In

Russian, the model creation and its application are also formally

different and the corresponding English terms are used for them.

However, usually, the most common is the term "Modeling", which

refers to the process of using the already developed model. While using

"Modeling "in English sense, it is often about "model creation".

Nevertheless, science does not like discrepancies. Therefore, in

this section we will use the terms "Modeling" and "Simulation" in their

conventional sense – modeling is the process of a model creation, while

simulation is the process of its use.

Internet of things systems are very complex systems that

combine electronic and mechanical devices, computers and information

transfer devices. It combines advanced technologies for creating

electromechanical devices and advanced information technology. This

leads to the fact that the construction of a mathematical model of IoT

devices (modeling) is difficult and, in many cases, impossible task. The

only solution of this problem is a development of independent

mathematical models for individual IoT devices and a storage in the

specialized databases. Simulation of IoT systems is performed in

several stages.

Firstly, the user creates a block diagram of a particular system,

which shows, how the individual devices of the system are connected

and interact with each other.

In the second stage of the simulation, the user selects the specific

types and characteristics of all elements of the IoT system. Element

16. Program Tools for the smart systems simulation

18

types are references to specific, pre-prepared mathematical models that

are stored in a database. The characteristics of the selected elements are

the parameters of these models, which adjust them to specific types of

operation.

In the third stage, which begins after the simulation started, a

sequential simulation process is performed for each model included in

the overall IoT system. The results that are obtained for each model are

passed to the associated models. Afterwards, the processes are

simulated for each of these models.

At a cyclic performance the simulation of work of all system of

the Internet of things in is carried out in general.

Now, let us take a closer look at the modeling and simulation

processes.

16.1.1 Classification and terminology. Real-world objects and

kinds of its simulation

More than two centuries the scientists are aware with the fact that

the differential equations, same in a form, describe the phenomena,

various by the nature. Such similarity of mathematical equations for

various phenomena is called isomorphism [6]. It allows us to use a

certain mathematical model to build a model of almost any similar

object, phenomenon or process. Studying of model allows better

understanding of nature of the phenomenon, which is modelled.

Therefore, modeling can be considered one of the main tools of science.

Phenomena described by isomorphic equations can be similar. It

means that between them the one-to-one correlation can be established,

what makes it possible to extend the conclusions obtained in the study

of one phenomenon to another.

Sir Isaac Newton gave the first scientific justifications of

conditions of similarity as well as specification of this concept in

relation to mechanical motion at the end of the 17th century. Now the

similarity law strictly proved by mathematical apparatus of the

similarity theory is based on three theorems.

The first theorem of similarity (it is also called the "direct"

theorem) for the first time is intuitively formulated by Isaac Newton in

1686, and is proved nearly two hundred years later, in 1848 by the

member of the French academy of Sciences Bertrán. According to this

theorem, the similarity of systems can always be found such

16. Program Tools for the smart systems simulation

19

dimensionless complexes of quantities, which for such points of these

systems are the same. Thus, such systems, phenomena or processes are

characterized by numerically equal values, which are called similarity

criteria. It means that if the phenomena are similar, the similarity

criteria can be found for them. To the contrary, for two systems, the

phenomena or processes in case of obtaining criteria of similarity,

identical in magnitude, this fact may be the basis for considering these

systems, phenomena or processes. However, the first theorem does not

specify how to establish similarity and how to implement it. It only

forms the necessary conditions for the existence of similarity (the same

similarity criteria).

The second theorem of similarity called p - the theorem, claims:

"The full equation of the physical process, written in a linear system of

units, can be represented by the dependence between the similarity

criteria, i.e., the dependence connecting dimensionless quantities,

obtained in a certain way from the existing parameters in the process."

It follows from the second theorem that if the functional dependence of

a phenomenon is known, that is, the parameters (factors) are known,

but its mathematical description is unknown, then the similarity criteria

can be obtained. The second theorem, as well as the first one, does not

indicate ways to identify similarity and ways to implement similarity.

The third similarity theorem determines the necessary and

sufficient conditions for the similarity of physical phenomena. The

third similarity theorem states: "the necessary and sufficient similarity

conditions are the proportionality of such parameters included in the

conditions of uniqueness, and the equality of the similarity criteria of

the phenomenon under study." Unambiguity conditions are the

conditions defining specific features of the studied phenomenon, for

example, terminal or boundary conditions. These conditions do not

depend on the mechanism of studied phenomenon.

Based on these three theorems, there was a special science about

model and modeling which is called "the theory of modeling and

similarity". This theory distinguishes between three types of models:

heuristic, natural (physical) and mathematical.

Generally, heuristic models represent the images drawn in

imagination of the person. Their description is conducted by words of

natural language, and therefore are ambiguous and subjective. These

models are not formalized, it means, they are not described by formal-

16. Program Tools for the smart systems simulation

20

logical and mathematical expressions, although they are based on real

processes and phenomena.

16.1.2 Physical and computer simulations

Natural (physical) models exist physically, so that they are quite

material. They differ from their prototypes in size, materials and

number of constituent elements. Numerous models of planes and ships,

which sets for production can be bought in specialized shops or in toy

stores, are known to all. These models are typical examples of physical

models. As a rule, these models perform the same function as the

prototypes – models of aircraft can usually fly, and models of ships can

swim. It is possible with them to carry out physical experiments and to

define as they behave in various conditions. These experiments are

usually cheaper, easier and safer than similar experiments with

prototypes. However, based on the similarity theorem, we can

understand how prototypes will behave under certain conditions.

Mathematical models are typically mathematical expressions (formulas

or equations) that define the relationship between the basic parameters

of a process or phenomenon. Mathematical models are not material.

Experiments with them (simulation) do not demand any equipment,

except the computing device. It is not necessarily that such device

should be a powerful modern computer. If you know how to count

orally, then you can use yourself as a device. The drawback of

mathematical models is that they usually do not take into account all

the parameters of the phenomenon or process and not all the

connections between these parameters. It means while applying

mathematical models, there is always some error that occurs because of

the inevitable errors of calculations as well as it can be incorporated in

the mathematical model itself.

However, today mathematical models are the most used in the

simulation of devices of the Internet of things. Advantages of computer

modeling are the reason:

1. No physical objects need to be created to perform the simulation.

Computer modeling does not demand expenses of materials and costs

of production of physical model, that is, this type of modeling is the

cheapest.

2. Simulation by mathematical model allows to study the behavior

of the object in such conditions that are difficult or impossible to

16. Program Tools for the smart systems simulation

21

implement in the experiment, such as ultrahigh temperatures or

pressures.

3. Mathematical models of objects can be combined among

themselves. Thus, it is possible to simulate a system of objects at once,

even those that can not be combined in real life.

By the way, IoT devices almost never function separately from

each other. They are always integrated into the system. It is the main

feature of their operation. The Internet in term "Internet of Things"

serves only as a binding element of a system. Things are basic here, not

what unites them.

Finally, one more thought. Mathematical models, and simulation,

which is carried out using them, are the main source of information for

today about the behavior of the things that we use. Mathematical

models are built based on laws by which a particular object or

phenomenon of nature function. There is a question that worries the

most powerful minds of humanity such as the physicist Einstein and the

mathematician David Gilbert. The issue concerns why generally Nature

(with a capital letter) has to submit the mathematical equation.

Mathematics was born at the beginning of time as a mean for

calculations of what the person dealt with. These calculations were

reduced to integers and the operations of addition or subtraction. How

many Buffalo do I have now? Three ones. One more was born. How

many? Four. One fell into the gorge. How many lefts? Three again.

There are basics of modern mathematics. Anything else - fractional

numbers, multiplication and division - is only a consequence of our

imagination. Roots, logarithms, derivatives and integrals – where do

they exist in Nature? The same capital letters? Nowhere. If someone

remembers about well-known Pythagorean`s theorem in which the root

appears – and it is also not in nature. In Nature, there is a relationship

between the legs and the hypotenuse. Why do mathematical equations

describe the behavior of Nature?

There is still no response to this question. Even so, every day we

use mathematics to predict something in our lives. Even so, the answer

can be very simple. May be laws, which, as we suppose, the Nature

follows, are also imagination of our mind, as well as mathematics,

which describes these laws?

16. Program Tools for the smart systems simulation

22

However, whatever the case with laws, we are able based on

these laws to do mathematical models and to predict behavior of

systems. We do this through software. Let us consider these means.

16.1.3 Virtual simulation. Common user interaction systems for

virtual simulations

Currently, in the Internet you can find a lot of specialized software

for simulation of objects, devices and systems of the Internet of things.

Use of IOT simulators is the first step in creating and testing smart

home and smart city devices. In this preliminary development step, a

computer model of the IoT system is created. This computer model is a

simulation, which aims to make sure the system efficiency and identify

possible problems in its operation. At this step takes place approbation

of future system and clarification of its working capacity.

Use of simulators is much cheaper than installing the system on site

and testing it in the real world. Let us consider some of the most used

computer simulation systems.

Simulator IoTIFY. It is a virtual online laboratory, that allows a user,

who has access to the Internet to create a workspace where he can

quickly assemble his own virtual hardware, download the desired

operating system or build a firmware of his own choice. This tool

allows to simulate large-scale IoT installations in virtual IoT lab. User

traffic can be created from thousands of virtual endpoints and platform

can be tested for scale, security, and reliability to identify and resolve

issues before deploying the end product in a real environment. Heavy

network traffic can be simulated to see how network latency affects

overall system performance. Thus, this system allows [7]:

Select an existing hardware and touch combination or create own.

 Choose an operating system that meets certain requirements or

create firmware for the microcontroller.

 Develop software on virtual hardware with the language for

choice.

 Share the project with colleagues and collaborate with other IoT

projects.

IoTIFY only allows network access to the resources of the

simulation. Only project work files are stored on the user's computer.

16. Program Tools for the smart systems simulation

23

NetSim. NetSim is a powerful network simulator that can be used to

model IoT systems. [8] It can be used to test the performance of real-

world applications over a virtual network. If you are creating a new IoT

network or expanding an existing one, NetSim can be used to predict

how the relevant network will work.

NetSim can be used in three versions. The first version, NetSim Pro,

as its name suggests, is the most powerful. It can be used by corporate

users and allows:

 Create network scripts using the NetSim GUI or using XML

configuration files.

 To add devices, links, software applications, etc. in environment

using a graphical interface NetSim.

 Model large and complex networks using an XML configuration

file that comes with automatic validation

 Animate the flow of packets through wired and wireless links.

 To see performance metrics at different levels-networks, subnets,

links, queues, applications, and so on.

 Explore a variety of metrics such as bandwidth, latency, loss,

packet error, link usage and so on.

 To interpret the indices using the built-in scopes and schedules.

 Export packages and files to software packages such as Excel,

Notepad for processing and statistical analysis.

The external interface allows NetSim to transfer instantly simulation

results to other programs such as MATLAB. This program can start its

computing process and send the information to NetSim. Then, NetSim

can use this information to carry out their procedures for modeling

networks.

This simulator supports multiple sources of information and can be

scaled to hundreds of nodes. You can simulate a wide range of

situations using “What-if” scenarios and test metrics such as loss,

latency, errors, quality of service, and more.

MATLAB. MATLAB has a powerful IoT module that allows you to

develop and test smart devices as well as collect and analyze IoT data

in the cloud. It is possible to use MATLAB to create a prototype of IoT

systems. In particular, it is possible to develop algorithms in Simulink

and then deploy them on embedded hardware [9]. MATLAB can

simulate IoT systems built on Arduino and Raspberry Pi processors.

16. Program Tools for the smart systems simulation

24

MATLAB allows:

 Access streaming data and pre-archived data through built-in

interfaces for cloud storage, relational and non-relational databases, and

protocols such as REST, MQTT, and OPC UA.

 Create your own IOT algorithms using thousands of proven, out-

of-the-box functions for processes such as data cleaning, machine and

deep learning, computer vision, management and optimization.

 Develop data-driven physical models to understand, control, and

optimize the behavior of IoT systems.

 To use the platform ThingSpeak, IoT, Analytics MATLAB for

prototyping and operation of small systems.

BevyWise IoT Simulator. This IOT Simulator is an easy to use, but

powerful simulation tool that allows the simulation of thousands IoT

devices. Intuitively clear interface allows you to create and add the

necessary devices in the shortest possible time. You can customize the

simulated IoT devices. IoT Simulator can store simulation data in

FLAT or MySQL and SQLite files. The tool supports thousands of IoT

devices in Windows 7 and later versions.

IoT Simulator allows to create templates and dynamic networks for

devices. The simulation is performed using the same code signals as

real IoT devices. Simulation of IoT systems behavior is performed

using templates, which allows you to create thousands of IoT devices in

a few minutes.

IoT Simulator supports storage of simulated network in MySQL

database. It is possible to store multiple modeling environments and

reuse them.

ANSYS IoT Simulator. This simulator is a powerful IoT

engineering simulation software system. To create it, the experience of

the world's leading companies that create IoT systems in various

industries is used.

ANSYS IoT Simulator allows developing reliable electronic devices

for industrial IOT. The solutions cover the development and optimal

placement of sensors, antennas, electronic control and their power

system required to connect intelligent machines and their ecosystems.

In addition, the virtual system ANSYS helps to record and certify the

embedded code that manages the smart devices and provides a reliable

signal without interference in the working industrial installation.

16. Program Tools for the smart systems simulation

25

Interaction with other software products of ANSYS family allows

performing modeling and technical development at all stages of IoT

systems creation, from primary design to development solutions.

IBM Watson IoT Platform. IBM's Watson IoT Platform is an

innovative cloud platform that allows IoT developers to create their

own platform, even if they do not have physical devices. Built-in tools

allow tracking and analyzing IoT data and then use it to create and

optimize own programs. The tool supports a wide range of functions for

manipulating data, storing it and even interacting with social media.

IBM Watson to IBM IoT Cloud Platform provides a comprehensive

set of tools, which includes gateway devices, control devices and access

programs. With the Watson IoT platform, you can collect data from

connected devices and perform real-time data Analytics.

Proteus IoT Builder. IoT Builder is the world's first software

product that provides a complete workflow for designing IoT devices

on Arduino or Raspberry Pi hardware. It can be added either Visual

Designer for Arduino, or Visual Designer for Raspberry Pi product to

allow development of remote interfaces of embedded devices.

Simulation in Proteus IoT Builder system has many features and at

the same time it is intuitive. It starts with designing the hardware of the

IoT device on the layout. There is the possibility of adding electronic

screens, sensors, dials, buttons and many other devices using the gallery

controls.

Due to its simplicity and the presence of the student version of the

program, Proteus IoT Builder today is the most common simulation

system. At the same time, the Arduino platform is the most common

platform for building real IoT systems. Therefore, the further process of

IoT systems simulation will be considered on the example of this

software.

16.2 Simulation IoT devices based on Arduino platform

In this section, we will get acquainted with the basic concept and

principle of building the Arduino platform. The year of Arduino birth

can be considered as 2005, when a team of young designers from the

Italian town of Ivrea created the first prototype of Arduino Board.

Starting the work, the development team immediately set a goal to

make a microprocessor device, the price of which would be suitable for

a student's pocket - $ 30. They also wanted to make it with the capacity

16. Program Tools for the smart systems simulation

26

to build, like a normal children's designer. At the same time, Arduino is

even more than a regular constructor. Arduino is a platform based on

which a variety of complex things can be created. Today, there are

many interesting Arduino-based developments such as breathalyzers,

led cubes, home automation systems, Twitter notification displays, and

even DNA analysis kits! Already there were whole clubs and

communities of Arduino fans. Google has recently released an

Arduino-based development kit for its Android smartphone [13].

Let us take a closer look at what it is – Arduino.

16.2.1 General information about the Arduino platform

Arduino is a tool for designing electronic devices (electronic

designer) more tightly interacting with the physical environment than

standard personal computers, which actually work only with the data

stored in it [14]. It is a platform designed to build open source cyber-

physical systems, based on a simple printed circuit Board with a

modern environment for writing software.

Arduino is used to create electronic devices with the ability to

receive signals from various digital and analog sensors that can be

connected to it, and control various actuators (Fig. 16.1).

Fig. 16-1 Arduino Board

The device projects, based on Arduino, can work independently or

interact with the software on computer (e.g. Flash, Processing,

MaxMSP). Boards can be assembled by the user himself or purchased

16. Program Tools for the smart systems simulation

27

in a set. The open source software development environment is

available for free download.

There are many microcontrollers and platforms for creating cyber-

physical systems, such as Parallax Basic Stamp [15], Netmedia's BX-24

[16], Phidgets [17], MIT's Handyboard [18], and many others that offer

similar functionality. All of these devices even look similar to the

Arduino. They integrate separated programming information into an

easy-to-use Assembly. Arduino also simplifies the work process with

microcontrollers, but has a number of advantages compared to other

devices for teachers, students and amateurs:

• Low-cost of Arduino boards are relatively cheap compared to

other platforms. The most inexpensive version of the Arduino module

can be assembled by hand, and some even ready-made modules cost

less than $ 50.

• Cross-platform - the Arduino software runs on Windows,

Macintosh OSX, and Linux. Most microcontrollers are limited to

Windows.

• Simple and clear programming environment - Arduino

environment is suitable for both novice and experienced users. Arduino

is based on the programming environment Processing, which is very

convenient for teachers, as students who work with this environment

will be familiar with Arduino.

Extensible and open source Arduino software is released as a tool

that can be supplemented by other users. It can be supplemented with C

++ libraries. Users, who want to understand the technical nuances, have

the opportunity to switch to the language AVR C which is based on C

++. Accordingly, it is possible to add code from the AVR-C

environment to the Arduino program.

16.2.2 Arduino and Arduino-compatible boards

Arduino is a set of electronic unit and software storage. An

electronic unit here is a printed circuit board with a set microcontroller

and a minimum of elements, which are necessary for its functioning.

The software is needed to create control programs. It consists of a

simple development environment the Arduino IDE and programming

language, namely the C/C++ version for microcontrollers,

supplemented by certain functions for controlling inputs/outputs on the

contacts of board.

16. Program Tools for the smart systems simulation

28

In fact, the electronic unit Arduino is analogous to the

motherboard of the modern computer. Arduino Mega 2560 (Fig. 1) –

this is a device, which based at microcontroller ATmega2560

(datasheet). The board itself consists of:

 54 digital inputs/outputs (15 can be used as PWM-outputs);

 16 analog inputs;

 4 UART (hardware receivers for the implementation of serial

in-terfaces);

 quartz resonator at 16 MHz;

 USB connector;

 power connector;

 ICSP connector for internal circuit programming;

 reset button.

16.2.3 Technical characteristics Arduino Mega

The main characteristics of the Arduino Mega 2560 are shown in

the table 1.1.

Table 1.1 - Characteristics of the Arduino Mega 2560

Operating voltage 5 V

Power supply (Recommended) 7-12 V

Power supply (Maximum) 6-20 V

Digital inputs / outputs 54

Analogue inputs 16

Maximum current of 5 V output 40 mА

Maximum current of 3.3 V

output

50 mА

Clock frequency 16 MHz

The board Arduino Mega 2560 can powered by two methods,

namely:

 from a computer by using a USB cable;

 from an AC / DC adapter or from battery.

When using an external power supply, it is necessary to select its

value in the range of 6 to 20 V. But when using a power source with a

voltage below 7 V, the voltage at the output 5 V decreases, which leads

16. Program Tools for the smart systems simulation

29

to unstable function of the board. Using a power supply with a voltage

higher than 12V leads to overheating of the voltage regulator and to

breaking down of board. Considering this, it is recommended to use a

power source with a voltage value in the range of 7 to 12 V.

16.2.4 Inputs and outputs of Arduino Mega 2560.

The main inputs and outputs that are located on the Arduino

Mega 2560 (Fig. 16-2) are designed to connect of contacts boar with

sensors or actuators. Pins on the board Arduino Mega 2560:

 VIN – the input voltage to the board when it's using an external

power source (as opposed to 5 volts from the USB connection or other

regulated power source). You can supply voltage through this pin, or, if

supplying voltage via the power jack, access it through this pin.

 5V – this pin outputs a regulated 5V from the regulator on the

board. The board can be supplied with power either from the DC power

jack (7 - 12V), the USB connector (5V), or the VIN pin of the board (7-

12V).

 3.3V – this pin comes in 3.3 V from the voltage regulator on

the board. Maximum current is 50 mA;

 GND – 2 ground pins;

Fig. 16.2 – The pins location of the board Arduino Mega 2560

 IOREF – this pin on the board provides the voltage reference

with which the microcontroller operates. A properly configured shield

can read the IOREF pin voltage and select the appropriate power source

16. Program Tools for the smart systems simulation

30

or enable voltage translators on the outputs for working with the 5V or

3.3V.

The Arduino Mega 2560 is located 54 digital pins. Each digital

contact can be used as an input and output, using functions pinMode(),

digitalWrite() and digitalRead(). They work at 5 V voltage. Each pin

can provide or receive 20 mA in the recommended operating mode and

has an internal load resistor (default disabled) with a nominal

impedance of 20-50 kΩ. The maximum permissible current value is 40

mA - this value should not be exceeded to avoid damage to the

microcontroller. In addition, some foams have specialized functions:

Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial

2: 17 (RX) and 16 (TX); Serial 3: 15 (RX) and 14 (TX). Used to

receive (RX) and transmit (TX) TTL serial data. Pins 0 and 1 are also

connected to the corresponding pins of the ATmega16U2 USB-to-TTL

Serial chip.

External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt

5), 19 (interrupt 4), 20 (interrupt 3), and 21 (interrupt 2). These pins can

be configured to trigger an interrupt on a low level, a rising or falling

edge, or a change in level. See the attachInterrupt() function for details.

PWM: від 2 до 13 і від 44 до 46Provides 8-bit PWM output

using the analogWrite () functionPWM is a pulse-width modulation, an

operation for obtaining a variable analog value using digital devices. By

outputting a signal that consists of high and low levels, the voltage is

modeled between the maximum (5 V) and the minimum (0 V) values.

The duration of switching on the maximum value is called the pulse

width. It changes to get different analog values.

SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These foams

support the SPI connection using the SPI libraryI. SPI is a serial

peripheral interface. SPI is a synchronous interface in which each

transmission is synchronized with a clock signal generated by the

master device (microcontroller).

LED: 13. There is a built-in LED connected to digital pin 13.

When the pin is HIGH value, the LED is on, when the pin is LOW, it's

off.

TWI: 20 (SDA) and 21 (SCL). Support TWI communication

using the wire library

The Mega 2560 has 16 analog inputs, each of which provide 10

bits of resolution (i.e. 1024 different values). By default they measure

16. Program Tools for the smart systems simulation

31

from ground to 5 V, though is it possible to change the upper end of

their range using the AREF pin and analogReference() function.

There are a couple of other pins on the board:

AREF: Reference voltage for the analog inputs. Used with

analogReference().

Reset. Bring this line LOW to reset the microcontroller.

Typically used to add a reset button to shields which block the one on

the board.

16.3 Software development. Arduino C/C++ sketch

The development of programs to perform certain tasks with the

help of the Arduino boards is carried out in the official programming

environment of the Arduino IDE. This environment is intended for

writing, compiling and downloading created programs in the memory

of the microcontroller.

A program written in the Arduino IDE programming

environment is called sketch. It is written in a program code editor.

When saving and exporting a project in the notification area appear

explanations and error information. The text output window shows

Arduino messages, which show full error reports and other important

information. The toolbar buttons allow you to check and write the

program, create, open and save the sketch; open the monitor for the

serial bus.

Developed sketches can receive additional functions through

libraries, which are a specially designed code. It helps to realize some

of the opportunities that can be added to the project. There are many

specialized libraries. Usually, libraries are written to simplify the

decision of a task.

16.3.1 General methodology of Arduino sketch working

Sketches for Arduino are written in a language very similar to the

C programming language. However, if in the standard C language, the

function main() is necessary, then it is missing in the sketches. But here

two functions are necessary – setup() and loop().

When enabled, the Arduino firmware calls the setup() function.

The setup() function is called only once, each time the board is started.

This place is ideal for initialization (setting initial values) of variables,

setting pin modes (input or output), setting correspondence between

16. Program Tools for the smart systems simulation

32

connected sensors, servo drives or other pins. After the setup() function

is executed, the loop() function is looped (i.e., immediately after exiting

the setup function, the loop function is executed, after exiting it, it is

called again. This process continues until the power is turned off (Fig.

16.3).

Fig. 16.3 – Basic elements of the Arduino IDE programming

environment

After the functions setup() and loop() in the sketch can be placed

other functions that are written by the user. These functions perform the

actions provided by the algorithm of work and at least one of them must

be called from the function loop(). The syntax of writing custom

functions completely coincides with the syntax of the C language.

A standard example of the simplest sketch is a sketch that makes

the LED blink. Consider all the steps for writing and running such a

sketch.

Step 1. Connect with the USB cable the appropriate outputs of

the multi-function unit and computer to work with the board Arduino

Mega 2560, which is located inside the multifunction unit.

Step 2. Check for the Arduino IDE environment development

required on your computer to work with the board Arduino Mega 2560.

In the absence of this program - download it from the official site [19].

Step 3. Run on the computer the program of development

environment Arduino IDE. Select the board Arduino Mega 2560 by:

«Tools/Board/Arduino Mega 2560» (Fig 16.4).

16. Program Tools for the smart systems simulation

33

Fig. 16.4 – Choice of board Arduino Mega 2560

Step 4 is to select the appropriate port by «Tools/Port/COM1

(Arduino Mega 2560) (Fig. 16.5).

Fig 16.5 – Choice of port

16. Program Tools for the smart systems simulation

34

Consider working with a sketch on a simple example. This

example has become traditional for illustration work with sketches.

16.3.2 Arduino sketch example

In this example, we will make the LED blink at intervals 1

second.

The LED connection is made as follows:

1) Cathode connects to any GND in foam panel of the

multifunction unit;

2) Anode connected to pin 22 in foam panel of the multifunction

unit (this pin is digital).

Next you need to open the program Arduino IDE, create a new

sketch (in the toolbar, click “File / New” (Fig. 16.6)

and load the next sketch there:

int led = D22;

void setup()

{

pinMode(led, OUTPUT);

}

void loop()

{

digitalWrite(led, HIGH);

delay(1000);

digitalWrite(led, LOW);

delay(1000);

}

Next, need to check the sketch text for errors: in the toolbar, click

“Sketch / Verify” (Fig. 16.7). After that, at the status window will

display information about the structure of the sketch, as well as the

presence or absence of pillocks.

16. Program Tools for the smart systems simulation

35

Fig. 16.6 – Create a new sketch

Fig 16.7 – Function of verify a sketch

16. Program Tools for the smart systems simulation

36

If the program does not detect any inequalities in the code, man

can download sketch to the microprocessor. To do this, click : “Sketch /

Upload” (Fig. 16.8). After this, the LED should be measured once a

second.

Fig. 16.8 – Function of upload a sketch

16.4 Work related analysis

The simulation of the Internet of things is a relatively young area

of research. Therefore, there are few publications on this topic.

However, European universities conduct research and modeling of the

Internet of things and individual devices. In addition, a separate

direction of modeling and simulation is the modeling of the

communication component. So, in the article [20] S. Forbacha and C.

Pattinson simulated an energy-aware mobile agent (MA) NMS in

OPNET which could operate efficiently in a power saving environment.

He created an infrastructur wireless network with scenarios which

represented non-power saving and power saving and then compared the

impact of power saving on both centralized and optimized paradigms.

This topic continues the publication [21] in which the authors

model self-configuring wireless network in which each node could act

as a router, as well as a data source or sink. Its application areas include

16. Program Tools for the smart systems simulation

37

battlefields and vehicular and disaster areas. It is shown that any

techniques applied to infrastructure-based networks are less effective

than this self-configuring wireless network.

A series of publications of researchers from Royal Institute of

Technology (KTH, Stockholm, Sweden). In paper [22] authors model

an emerging network architecture based on edge computers. This

network can be protected even under situations such as network failures

or denial-of-service (DoS) attacks. This model allows IoT devices to

migrate to other local authorization entities served in trusted edge

computers when their authorization entity becomes unavailable.

Conclusions and questions

This chapter describes the methods and tools for modeling and

simulating Internet of things systems and individual devices. The main

attention is paid to the modeling of smart home systems, which are built

on the basis of microprocessor boards ARDUINO. A review of the

main software tools used to simulate the Internet of Things systems has

been completed. The PROTEUS software system is considered in

detail, which allows simulating the operation of ARDUINO devices in

a convenient form.

To control the assimilation of the material we recommend that you

answer the following questions.

1. What is modeling?

2. How does computer modelling differ from computer

simulation?

3. What types of models do you know?

4. What is a physical model?

5. What is a verbal model?

6. What is a mathematical model?

7. Can Einstein's famous formula be considered a mathematical

model?

8. Why do I need to simulate the work of the Internet of things?

9. What software for simulating the Internet of things do you

know?

10. What are the possibilities of the simulation program IoTIFY?

11. What are the possibilities of the simulation program NetSim?

16. Program Tools for the smart systems simulation

38

12. What are the possibilities of the simulation program

MATLAB?

13. What are the possibilities of the simulation program BevyWise

IoT Simulator?

14. What are the possibilities of the simulation program ANSYS

IoT Simulator?

15. What are the possibilities of the simulation program IBM

Watson IoT Platform?

16. What are the possibilities of the simulation program

PROTEUS?

17. List the technical characteristics of the Arduino Mega.

18. List the components of the ARDUINO Input-Output System.

19. What is ARDUINO sketch?

20. Why in the sketch function Setup() is needed?

21. Why in the sketch function Loop() is needed?

22. What is the methodology of the sketch?

23. In what language sketches are written for ARDUINO?

24. List the main research directions in the field of simulation of

the Internet of things.

25. Download the PROTEUS program and repeat the example

given in this section.

References

1. Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. 2000.

Theory of Modeling and Simulation (2nd ed.). Academic Press, Inc., Orlando,

FL, USA.

2. John H. Holland, "Theory and Models: General Principles," in Signals

and Boundaries:Building Blocks for Complex Adaptive Systems , 1, MIT

Press, 2012, pp.35-56

3. Sumit Ghosh; Tony Lee, "Principles of Modeling Complex

Processes," in Modeling and Asynchronous Distributed Simulation: Analyzing

Complex Systems, 1, Wiley-IEEE Press, 2000, pp.332. doi:

10.1109/9780470545300.ch3

4. Rothmaler, P., 2000, Introduction to Model Theory, Amsterdam:

Gordon and Breach.

16. Program Tools for the smart systems simulation

39

5. "Modeling and simulation", En.wikipedia.org, 2019. Available:

https://en.wikipedia.org/wiki/Modeling_and_simulation. [Accessed: 01- Jan-

2019].

6. M. Hazewinkel, Encyclopaedia of mathematics. Dordrecht: Kulver

academic, 1995.

7. "IoTIFY- Develop full stack IoT Application with virtual device

simulation", Iotify.io, 2019. Available: https://iotify.io/. [Accessed: 06- Jan-

2019].

8. "NetSim-Network Simulator & Emulator | Emulator", Tetcos.com,

2019. Available: https://www.tetcos.com/emulator.html. [Accessed: 06- Jan-

2019].

9. "Internet of Things", Mathworks.com, 2019. Available:

https://www.mathworks.com/solutions/internet-of-things.html. [Accessed: 06-

Jan- 2019].

10. "IoT Simulator, Simulate IoT Devices - Bevywise Networks",

Bevywise Networks | IoT Platform & IoT Solutions, 2019. Available:

https://www.bevywise.com/iot-simulator/. [Accessed: 06- Jan- 2019].

11. "IoT - Industrial Equipment and Asset Management | ANSYS",

Ansys.com, 2019. Available: https://www.ansys.com/Campaigns/internet-of-

things/industrial-equipment-and-asset-management. [Accessed: 06- Jan-

2019].

12. "IBM Cloud Docs", Console.bluemix.net, 2019. Available:

https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplat

e. [Accessed: 06- Jan- 2019].

13. Arduino Project Hub. (2019). Google Assistant Robot Using Arduino.

Available at: https://create.arduino.cc/projecthub/jithinsanal1610/google-

assistant-robot-using-arduino-0c70d6 [Accessed 9 Jan. 2019].

14. Arduino.cc. (2019). Arduino - Home. Available at:

https://www.arduino.cc/ [Accessed 9 Jan. 2019].

15. Parallax.com. (2019). Getting Started | Parallax Inc. [online]

Available at: https://www.parallax.com/getting-started [Accessed 9 Jan. 2019].

16. Basicx.com. (2019). BasicX by NetMedia Inc.. Available at:

http://www.basicx.com/ [Accessed 9 Jan. 2019].

17. Phidgets.com. (2019). Phidgets Inc. - Products for USB Sensing and

Control. [online] Available at: https://www.phidgets.com/? [Accessed 9 Jan.

2019].

18. Handyboard.com. (2019). THE HANDY BOARD AND THE SUPER

CRICKET. [online] Available at: http://www.handyboard.com/ [Accessed 9

Jan. 2019].

19. Arduino.cc. (2019). Arduino - Software. Available at:

https://www.arduino.cc/en/Main/Software [Accessed 13 Jan. 2019].

16. Program Tools for the smart systems simulation

40

20. Forbacha, S. and Pattinson, C. (2011). Simulation of Energy-Aware

Mobile Agent Based Network Management System. 2011 Fifth Asia

Modelling Symposium.

21. Pullin, A., Pattinson, C. and Kor, A. (2018). Building Realistic

Mobility Models for Mobile Ad Hoc Networks. Informatics, 5(2), p.22.

22. Kim, H., Kang, E., Broman, D. and Lee, E. (2017). An Architectural

Mechanism for Resilient IoT Services. Proceedings of the 1st ACM Workshop

on the Internet of Safe Things - SafeThings'17.

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

41

17. THREE-LEVEL SIMULATION OF IOT/IOE BASED

SYSTEMS WITH THE USE OF UML DIAGRAMS, PETRI NETS

AND TEMPORAL LOGIC

Dr. Ass. Prof. . O. Martynyuk, DrS. Prof. O. V. Drozd (ONPU)

Сontents

Abbreviations .. 42

Introduction ... 43

17.1. Simulation and verification in architecture of IoT and IoE-based

systems with the use of visual UML diagrams 43

17.1.1 Introduction to representation of architecture of IoT and IoE-

based systems with the use of visual UML diagrams (precedents,

components, classes, interaction, activities, sequences, states) 44

17.1.2 Static visual UML diagrams for the description of architecture of

IoT and IoE-based systems and their analysis 47

17.1.3 Dynamic visual UML diagrams for the description of

architecture of IoT and IoE-based systems and their analysis 50

17.2 Simulation and verification in behavior of IoT and IoE systems on

the basis of the Queuing Systems and Petri Nets 53

17.2.1 Introduction to the general description of the operation of IoT

and IoE systems at the level of resource and functional mode

presentation .. 54

17.2.2 Resource imitating modeling and simulation on base of

functioning of IoT and IoE systems and their components using QS . 59

17.2.3 Behavior imitating modeling of features for functioning of IoT

and IoE systems and their components using Petri Nets 61

17.3 Simulation and verification of synchronization processes in IoT

and IoE-based systems on the basis of temporal logic 64

17.3.1 Introduction to specification of synchronization process in IoT

and IoE-based systems by using of temporal logic 64

17.3.2 Simulation and verification of IoT and IoE-based systems at the

level of temporal logic ... 66

17.3.3 Special temporal simulation and verification of IoT and IoE-

based systems .. 66

17.4 Work related analysis .. 67

Conclusions and questions... 69

References ... 72

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

42

Abbreviations

CPN – Colored Petri Nets

CTL – Concurrent Temporal Logic

DFD – Data-flow Diagram

EGS – Evolutionary-Genetic System

ERD – Entity-Relationship Diagram

GPSS – General Purpose Simulation System

IDE - Integrated development environment

IoE – Internet of Everything

IoT – Internet of Things

LTL – Linear Temporal Logic

MAS – Multi-Agent Systems

QS – Queuing System

TINA – TIme Petri Net Analyzer

UML – Universal Modeling Language

UML-CSAS – UML-diagrams of Communications, Sequences,

Activity, States

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

43

Introduction

The purpose of section is formation of complete idea of

mathematical base, formal the specification and modeling of Internet of

Things (IoT) and Internet of Everything (IoE) [1 – 4] of systems on

structural, functional and event – time levels with the use of the

corresponding Universal Modeling Language (UML) diagrams [5 – 7],

Queuing Systems (QS) [8, 9], automata [10, 11] and Petri nets [12 –

 14], temporal logic [15, 16] and also development of skills in the use

of the gained knowledge in practice of the general system for the

specification and modeling of IoT and IoE.

Objective is to understand formal structural, component, object,

behavioral and temporary models of the architecture for systems of IoT

and IoE in the form of UML diagrams, QS, Petri nets, expressions and

conclusions of temporal logic.

Subjects are formal processes of modeling and the verification of

the structural, component, object, behavioral and temporary models’

architectures for systems of IoT and IoE.

Tasks solved:

1) Visual modeling, simulation and verification of architectures

for systems of IoT and IoE on the basis of visual UML diagrams.

2) Resource modeling, simulation and verification of architectures

for systems of IoT and IoE on the basis of QS.

3) Behavioral modeling, simulation, analysis of correctness,

verification, on-line testing and testing check of architectures and

processes for IoT and IoE systems on the basis of QS, expanded finite

automata and Petri nets.

4) Modeling and verification in synchronization of processes for

systems of IoT and IoE on the basis of temporal logic.

17.1. Simulation and verification in architecture of IoT and

IoE-based systems with the use of visual UML diagrams

The following objects are taken as input:

1) Specifications of the technical description for the architecture

of components, subsystems IoT and IoE-based systems, as well as such

systems, in future – as a whole in analytic-text, tabular, graphical

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

44

representations, defining the structure of topological relationships,

functions, information objects, interfaces of topological interactions (in

future – format, dimension, type, conditions of transmission over the

topological connections of the objects to be sent – parameters, data,

methods and their compositions), the temporal behavior of functions

and scenarios (in future – time diagrams, graph, automaton, algorithmic

representations).

2) The previously prepared static and dynamic UML diagrams,

which in UML standards define the architecture of components, IoT

and IoE-based systems subsystems, and also such systems as a whole in

analytic-text, tabular, graphical representations, for which system-wide

interactive-visual analysis, simulation and verification, in particular, in

the Star UML tool environment is necessary.

The following objects are considered as output objects: the

resulting correct and verified UML static and dynamic diagrams, which

in UML standards represent the architecture of components, IoT and

IoE-based systems, as well as such systems in general, for which in the

corresponding instrumental environment, particular, Star UML, system-

wide interactive-visual analysis, simulation and verification, special

conditions obtained, parameters and scenarios of such analysis,

simulations, verifications, special results of fulfillment of conditions,

application of parameters and scenarios.

17.1.1 Introduction to representation of architecture of IoT

and IoE-based systems with the use of visual UML diagrams

(precedents, components, classes, interaction, activities,

sequences, states)

In the construction of both specifications and models on the basis

of UML (also on QS, automata, Petri nets, temporal logic) in the

analysis and synthesis of the architecture of systems and processes in

IoT and IoE, the following basic stages of early system engineering

technology are usually defined:

Stage 1. Building the structure of system and determining the

composition of the components.

Stage 2. Definition of syntax for system and component

operations and functions.

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

45

Stage 3. Determining the structure and format of information

objects and classes for system, components and functions.

Stage 4. Building system intercomponent interfaces (structure

links) with their formats, dimensionality of values, binding conditions

and events on both sides.

Stage 5. Determining the own logical time, conditions and events

both for the system as a whole, and for components, functions,

information objects and classes, interfaces.

Stage 6. Building the relationship of temporal interactions,

synchronization, processing of conditions and events for functions,

information objects and classes, interfaces.

Stage 7. Construction of timing diagrams, procedures and

algorithms for executing system scripts, component functions, methods

and handlers of classes and objects.

Universal Modeling Language UML [5 – 7] and appropriate tool

environments, for example, Star UML, MS Visual Studio (UML) [5, 6,

17], are used for IoT architectural analysis and design, for system

structural, functional, object, component, event-time characteristics of

objects and relationships of IoT, their visual simulation and

verification.

In UML, all objects can be divided into the following basic types:

a) structural or static; b) behavioral or dynamic; c) grouping;

d) annotational.

In accordance with stages 1 – 7 of early system design technology,

the procedure for constructing and analyzing of the UML diagrams,

depending on the objects of the systems and components of IoT is

determined by the use of 7 types of the static UML diagrams at the

stages 1 – 4 for describing of precedents, components, objects, classes,

packages, layout, structure and by using of the 6 types of the dynamic

UML diagrams at the stages 5 – 7 for describing of synchronization,

activity, communication, sequences, automata and state machines,

interaction.

To determine the relationships of objects and entities of all types

of UML diagrams, also depending on the objects of the systems and

components of IoT, four types of basic relations are used, such as:

1) Dependence indicates that change of independent essence

somehow influences dependent essence. Graphically the relation of

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

46

dependence is represented in the form of a dashed line with the arrow

directed from dependent essence to independent.

2) Generalization as the relation between two entities, one of

which is a special (specialized) case another. Graphically generalization

is represented in the form of the line with the triangular not painted

over arrow on the end directed from private (subclass) to general (super

class).

3) Association points that one essence is directly connected with

another (or with others – the association can be not only binary).

Graphically, the association is represented in the form of the continuous

line with various additions connecting the connected entities.

4) Realization specifies that one essence is realization another.

Graphically realization is represented in the form of a dashed line with

the triangular not painted over arrow on the end directed from the

realizing essence by realized.

The tool environments (frameworks) with their operation bases,

such as Star UML, MS Visual.NET (UML) [5, 6, 17], are used at

specification, analysis and verification of visual UML diagrams.

System modeling requires the description of several models,

because it is not enough to describe the system from a single point of

view. A model is a description of any aspect of systems, such as

structure, behavior, requirements, etc. The model can be presented in a

text-analytical, tabular or visual-graphic form.

The model element is a building block of a model. Diagram is a

visual graphical symbolic representation of a model. A model can be

represented in one or more diagrams with different aspects. For

example, a diagram can focus on class hierarchical structure while

another diagram can focus on interaction between objects.

Diagrams consists of graphical elements, which are visual

representations of a model element.

Star UML possesses some features. So, Star UML is an open

source project to develop fast, flexible, extensible, featureful, and

freely-available UML/MDA platform. The goal of the Star UML

project is to build a software modeling tool. Star UML is a

sophisticated software modeler aimed to support agile and concise

modeling. The key features of Star UML are: Multi-platform support

(MacOS, Windows and Linux); UML 2.x standard compliant; Entity-

Relationship diagram (ERD); Data-flow diagram (DFD); Flowchart

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

47

diagram; Multiple windows; Modern UX; Dark and light themes;

Retina (High-DPI) display support; Model-driven development; Open

APIs; Various third-party extensions; Asynchronous model validation;

Export to HTML docs; Automatic updates.

MS Visual.NET (UML) possesses some own features too. MS

Visual.NET create UML models at different levels of detail throughout

the application lifecycle as part of development process. Track

requirements, tasks, test cases, bugs, and other work associated with

models by linking model elements to Team Foundation Server work

items and development plan. The key features of MS Visual.NET for

UML are: visualize code; describe and communicate user requirements;

define the architecture; validate system with the requirements and

intended design; share models, diagrams, and code maps using Team

Foundation version control; customize models and diagrams; generate

text using T4 templates.

17.1.2 Static visual UML diagrams for the description of

architecture of IoT and IoE-based systems and their analysis

The analysis of static and dynamic visual UML diagrams allows to

define and verify the description of architecture of IoT and IoE-based

systems. Static visual UML diagrams [5 – 7] serve to describe the static

part of architecture of the IoT and IoE-based systems in representation

of structure, their components, component functions and information

objects, intercomponent interfaces with their formats, conditions,

events and means of processing, in particular, hardware, software,

information objects of data collection, transfer and storage, sensory and

executing nodes, brokers, servers, administrative stations.

The seven types of the static UML diagrams are applicable for

describing of the precedents, components, objects, classes, packages,

placements and structures.

Precedents are the subjects and objects of IoT and the IoE systems,

their components and interactions. Components are the structural

components in systems of IoT and IoE. Objects are the program

objects, using the frames, variables, structures, functions, methods from

systems of IoT and IoE, their components. Classes are the program

classes, using the frames, variables, structures, functions, methods from

systems of IoT and IoE, their components. Packages are the program

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

48

packages, including program objects, components and classes from

systems of IoT and IoE, their components. Placements are objects of

physical positioning / allocation for components, objects, classes,

packages in IoT and IoE systems. Structures are the directional and

nondirectional point-to-point, peer tire and star, treelike, hierarchical

and cluster topological structures of relational and interaction of

component in systems of IoT and IoE.

Static visual UML diagrams are used to describe the static part of

architecture of complex subsystems, in particular, on base of IoT and

IoE. The main applications of static UML diagrams for describing

structures and systems of IoT and IoE include a number of approaches,

cases, stages and steps described below.

General static, spatial structures, described by static UML

diagrams, usually are formed in the natural sequence of the following

procedure of construction:

Step 1. Construction of diagrams of the precedents.

Step 2. Construction of diagrams of the components.

Step 3. Construction of diagrams of the classes.

Step 4. Construction of diagrams of the packages.

Step 5. Construction of diagrams of the objects.

Step 6. Construction of diagrams of the placements.

Step 7. Construction of diagrams of the composite structures.

Special spatial architecture of static network environment of IoT

and IoE by static UML diagrams is formed in the sequence of the

procedure of visual determination, construction, placement, simulation

and verification of the above special static UML diagrams for/into the

next network hosting and designing environment, further – the UML-

design procedure*, namely for/into:

Step 1. Existing product/resource service network for modification

of monitoring and control (UML-diagrams of components, classes,

structure (UML-CCS*) for end-points, network, control environment –

lighting, power supply, temperature/heating/air conditioning,

ventilation, humidity, ionization).

Step 2. Existing computer network consisting of wired and

wireless network environment (UML-CCS* for end-points, network,

control environment – administrative and end-user stations,

routers/access-points, servers).

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

49

Step 3. Developed external end-points of IoT and IoE subsystem,

(UML-CCS* for developed end-point environment – end-point

sensors/actuators, end-point controllers, controller buffers, controller

intercomponent interfaces).

Step 4. Developed topology structure and internal node

components of IoT and IoE subsystem (UML-CCS* for – developed

topology, nodes – brokers/routers/access-points, broker/router/access-

point buffers, broker/router/ /access-point intercomponent interfaces).

Step 5. Extended developed topology structure and internal

servers of IoT and IoE subsystem (UML-CCS* for – extended

developed topology, servers, server buffers, server intercomponent

interfaces).

Step 6. Extended developed topology structure and external

terminals of IoT and IoE subsystem (UML-CCS* for – extended

developed topology, end-user/administrative terminals, terminal

buffers, terminal intercomponent interfaces).

Step 7. Composition these partial developed static UML-CCS*

into general developed system of static diagrams and their structure for

existing product/resource service network, existing computer network

and developed IoT and IoE subsystem.

Spatial structure for special resource properties of dynamic

transport/service data flows by static UML diagrams is formed in the

sequence of the following UML-design procedure* for/into graph

structures (nodes, paths, trees, hammocks, cycles) of dynamic processes

through the developed general spatial structure of components of

subsystem of IoT and IoE (with all its components – sensors/actuators,

end-point controllers, buffers, intercomponent interfaces,

brokers/routers, servers, terminals), namely for:

Step 1. Computational, memory, communicative metric units,

min/max tensions and capacity, capacity of buffers, its values (UML-

CCS* with properties and methods and their placement for all trivial

graph nodes of dynamic processes, as components of transport/service

data flows).

Step 2. The same units and their values and properties but for all

nontrivial graph structures of dynamic processes, as components of

transport/service data flows).

Step 3. Selected technological standards, interface and

communication protocols of computer networks and IoT and IoE for

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

50

the all above static UML diagrams of the developed resource,

transport/service and computer subsystem of IoT and IoE.

Special spatial resource and transport/service evolutionary-genetic

system (EGS), their EGS-models – genes, chromosomes, individuals,

populations, signatures of operations and relationships [18, 21 – 23] is

formed by static UML diagrams into life cycles of IoT and IoE in the

sequence of the following technologies of construction – defining,

analysis, modeling, simulation and verification of next stages (each of

which includes own special evolutionary steps):

Stage 1. Developed slow spatial evolution by static UML

diagrams into life cycles of static general spatial topology system

structure of IoT and IoE.

Stage 2. Developed fast spatial evolution by static UML diagrams

into life cycles of dynamic transport/service data flows for spatial

system structure of IoT and IoE.

Stage 3. Developed coevolution as composition of slow spatial

evolution for spatial system structure and fast spatial evolution for

transport/service data flows by static UML diagrams.

Special spatial resource and transport/service multiagent systems

(MAS), with their MAS-models – agents, properties, signatures of

operations and relationships, properties autonomy, mobility,

intellectuality, cooperativeness [19, 20] is formed by static UML

diagrams into life cycle of IoT and IoE with the use the same sequence

of technologies and stages as it was considered for EGS.

17.1.3 Dynamic visual UML diagrams for the description of

architecture of IoT and IoE-based systems and their analysis

Dynamic visual UML diagrams [5 – 7] serve to describe the

dynamic part of architecture of the IoT and IoE-based systems in

ordered, temporary representation of processes, their synchronization

and interactions of conditions, events and means of processing, in

particular for main, component and interface functions and methods of

hardware, software, information objects of data collection, transfer and

storage, sensory and executing nodes, brokers, servers, administrative

stations.

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

51

The 6 types of dynamic UML diagrams can be applicable for

describing of the communications, survey interaction, the sequences,

synchronization, activity and states (automata).

Communications are the interactions of IoT and IoE systems

according to intercomponent network interfaces in structure of IoT and

IoE. Survey interaction is the special case of communications limited to

component functions and communications, essential to the general

external consideration of IoT and IoE. The sequences are logic-time

diagrams of scenarios of work of IoT and IoE, their components.

Synchronization is the special case of the sequences limited to

accounting interconnected only. Activity is a kind of graphic schemes

of algorithms for functions and methods of processes for IoT and IoE.

States (automata) are kinds of graphic schemes of machines of states

(Kripke's structures) and automata models for functions and methods of

processes for IoT and IoE.

Dynamic visual UML diagrams are used to describe the dynamic

part of architecture of complex subsystems, in particular, on base IoT

and IoE. The main applications of dynamic UML diagrams for

describing structures and systems of IoT and IoE include a number of

approaches, cases and steps described below.

General dynamic, spatial and temporary structure, described by

dynamic UML diagrams, are formed in the possible sequence of the

following procedure of construction:

Step 1. Construction of diagrams of communications, in

particular, survey interaction.

Step 2. Construction of diagrams of sequences, in particular,

synchronization.

Step 3. Construction of diagrams of activity.

Step 4. Construction of diagrams of states.

Special temporal individual functional architecture of static

network environment of IoT and IoE by dynamic UML diagrams is

formed in the sequence of the UML-design procedure*, namely

for/into:

Step 1. Service network* for modification of monitoring and

control (UML-diagrams of communications, sequences, activity, states

(UML-CSAS*) for functions of end-points, network, control

environment – lighting, power supply, temperature/heating/air

conditioning, ventilation, humidity, ionization).

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

52

Step 2. Computer network* consisting of wired and wireless

network environment (UML-CSAS* for functions of end-points,

network, control environment – administrative and end-user stations,

routers/access-points, servers).

Step 3. End-point subsystem*, (UML-CSAS* for functions of –

developed end-point sensors/actuators, end-point controllers, controller

buffers, controller intercomponent interfaces).

Step 4. Node subsystem*, (UML-CSAS* for functions of –

developed topology, nodes – brokers/routers/access-points,

broker/router/access-point buffers, broker/ /router/access-point

intercomponent interfaces).

Step 5. Server subsystem*, (UML-CSAS* for functions of –

extended developed topology, servers, server buffers, server

intercomponent interfaces).

Step 6. Terminal subsystem*, (UML-CSAS* for functions of –

extended developed topology, end-user/administrative terminals,

terminal buffers, terminal intercomponent interfaces).

Step 7. Composition these partial developed dynamic UML-

CSAS* into general developed system of dynamic diagrams, further –

dynamic system*, and their general structure for functions of existing

product/resource service network, existing computer network and

developed IoT and IoE subsystem.

Temporal structure for special resource properties of dynamic

transport/service data flows by dynamic UML diagrams is formed in

the sequence of the following UML-design procedure* for/into graph

structures (nodes, paths, trees, hammocks, cycles) of dynamic processes

through the general temporal hierarchical structure of functions of

components of subsystem of IoT and IoE (with functions of all its

components), namely for:

Step 1. Function and lows of distribution of values of

computational, memory, communicative metric unit, min/max tensions

and capacity, capacity of buffers (simple UML-CSAS* and their

placement for all trivial graph nodes of dynamic processes, as

components of transport/service data flows).

Step 2. The same function and lows of distribution in case of

complex UML-CSAS* and their placement for all nontrivial graph

structures of dynamic processes.

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

53

Step 3. Selected technological standards, interface and

communication protocols of computer networks and IoT and IoE for

the all above dynamic UML diagrams of the developed resource,

transport/service and computer subsystem of IoT and IoE.

Special spatial and temporal resource and transport/service EGS

for optimization analyze, their EGS-models is formed by dynamic

UML diagrams of IoT and IoE life cycle in the sequence of the

corresponding technology from determination to verification and the

following stages (each of which includes own special evolutionary

steps):

Stage 1. Developed slow evolution by dynamic UML diagrams

into life cycles of static general temporal system structure of IoT and

IoE.

Stage 2. Developed fast evolution by dynamic UML diagrams

into life cycles of dynamic transport/service data flows for temporal

hierarchical system structure of IoT and IoE.

Stage 3. Developed coevolution as composition of slow temporal

evolution for spatial system structure and fast temporal evolution for

transport/service data flows by dynamic UML diagrams.

Special spatial and temporal resource and transport/service MAS

for distribution, with their MAS-models is formed by dynamic UML

diagrams into life cycle of IoT and IoE in the sequence of the

corresponding technology from visual determination to verification and

with the use of the same stages as it was believed for EGS.

17.2 Simulation and verification in behavior of IoT and IoE

systems on the basis of the Queuing Systems and Petri Nets

The following objects are taken as input for QS:

1) The specifications of the technical description of the

architecture of components, subsystems IoT and IoE-based systems, as

well as such systems, defining the structure of topological relationships,

functions, information objects, interfaces of topological interactions,

the temporal behavior of functions and scenarios.

2) The previously prepared QS networks, that define in QS

standards, and automata/Petri nets, that define in Petri nets standards,

set accordingly resource and behavioral models of process,

components, IoT and IoE-based systems, as well as such systems as a

whole in analytic-text, tabular, graphical representations, for which

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

54

system resource and behavior analysis and simulation and verification

are needed, in particular, in the ExtendSim Demo tool environment.

The following objects are considered as output objects for QS and

Petri Nets: the obtained correct, verified QS and Petri nets, representing

resource and functional models of process, components, subsystems of

IoT and IoE-based systems, as well as such systems in general, for

which in the corresponding tool environment, in particular, ExtendSim

Demo and CPN Tools, system resource and automata analysis,

simulation and verification, obtained special conditions, parameters and

scenarios of such analysis, simulation, verification, and also special the

results of the fulfillment of conditions, the application of parameters

and scenarios.

17.2.1 Introduction to the general description of the

operation of IoT and IoE systems at the level of resource and

functional mode presentation

General description of the operation of IoT and IoE systems at the

level of the resource mode presentation is provided by queue systems –

QS and on their basis networks of QS [8, 9]. As is known, basic QS

includes two main objects – queues and service devices, which process

the streams of requests for some service. Queues and service devices

are characterized by own special working laws.

The main classification of QS is performed on the basis of

structural and functional properties. Accordingly, QS can be: single-

channel and multichannel; with expenses (refusal) and without

expenses; with expectation and without expectation; with a limited

length of turn and not limited length of turn; with limited waiting time

and not limited waiting time; with priority and without priority; single-

phase and multiphase; opened and closed; Markov and non-Markov;

QS compositions and also feature of the use of various QS for imitating

modeling of IoT and IoE-based systems, their components and

processes.

Except, classification of the QS is executed basrd on the streams of

requests, namely: uniform and non-uniform; regular and irregular;

recurrent and not recurrent; stationary, ordinary and extraordinary and

also, on the basis of features of the use of various streams for imitating

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

55

modeling of IoT and IoE-based systems, their components and

processes.

Various instrumental environments – frameworks ExtendSim

Demo, GPSS World, OMNet ++ [24 – 26] can be applied for

simulating of QS and networks of QS, analyzing the loading of

resources of the IoT and IoE and their components.

As it is known, simulation is the imitation of the operation of a real-

world process or system over time. The act of simulating something

first requires that a model be developed; this model represents the key

characteristics or behaviors/functions of the selected physical or

abstract system or process.

The model represents the system itself, whereas the simulation

represents the operation of the system over time. Verification and

validation are independent procedures that are used together for

checking that service or system meets requirements and specifications

and that it fulfills its intended purpose.

Specifically, specifications, resource modeling and simulation,

features of validation and verification of the QS-models of IoT and IoE

systems and their components can be performed, in particular, in

frameworks ExtendSim Demo, GPSS World, OMNet ++.

The built-in compiler is a computer program that transforms source

code, written in a programming language, into another computer

language, with the latter often having a binary form, known as object

code. Frameworks ExtendSim Demo, GPSS World, OMNet ++ have

the following features.

ExtendSim is a proven simulation environment capable of

modeling of IoT and IoE. ExtendSim is used to model continuous,

discrete event, discrete rate, and agent-based systems. ExtendSim's

design facilitates every phase of the simulation project, from creating,

validating, and verifying the model, to the construction of a user

interface that allows others to analyze the system. Simulation tool

developers can use ExtendSim's built-in, compiled language, ModL, to

create reusable modeling components. All of this is done within a

single, self-contained software program that does not require external

interfaces, compilers, or code generators.

GPSSWorld presents a graphical interface with an embedded text

editor that allows the definition of the model inside the tool itself. The

user can also find in a window all the defined GPSS blocks

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

56

implemented in the tool, simplifying the modeling process. GPSSWorld

presents the capability to represent the movement of the transactions

over the different elements of the model. Language Plus allows to

define the more complex behavior (the Plus syntax). GPSS World

brings all the simulation primitives up to the user interface, and makes

it easy to visualize and manipulate simulations. The result is that

simulations can be developed, tested, and understood more quickly than

before. There is more to GPSS World than just the GPSS language.

Since all the blocks have a graphical representation, the definition of a

GPSS process can be represented graphically.

OMNET++ has a domain-specific functionality such as support for

sensor networks, wireless ad-hoc networks, Internet protocols,

performance modeling, photonic networks, etc., is provided by model

frameworks, developed as independent projects. OMNeT++ provides

component architecture for models. Components (modules) are

programmed in C++, and then assembled into larger components and

models using a high-level language (NED). OMNeT++ IDE makes it

possible to run simulations directly from the integrated environment. It

is possible to run a simulation as a normal C/C++ application and

perform C++ source-level debugging on it. The user can also run it as a

standalone application or run batches of simulations where runs differ

in module parameter settings or random number seeds. OMNET++

SENSOR NETWORK helps to communicate among them using radio

signals, and deployed in quantity to sense, monitor and understand the

physical world. Wireless Sensor nodes are called motes. Wireless

Sensor Network is a self-configuring network.

Models and methods for analyzing the functioning of the

automaton class, in particular, extended automata [10, 11] and Petri

nets [12 – 14], can be used in processes of specification, modeling,

simulation, verification and check of the various aspects of behavior of

the IoT and IoE systems and their components. The features of such

models assume the following classifications and cases for:

1) Automata models, namely, synchronous, asynchronous,

temporary, nondeterministic, indistinct, contextual, predicate automata,

automata networks and hierarchies and also features of the use of

various automata models for behavioral modeling of the IoT and IoE-

based systems, their components and processes.

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

57

2) Petri nets, namely, simple, temporary, nondeterministic,

indistinct, contextual, predicate, painted Petri nets, compositions and

hierarchies of Petri nets and also features of the use of various Petri nets

for behavioral modeling of IoT and IoE systems, their components and

processes.

3) Features in analyze (specification, modeling, simulation and

check) of processes in functioning of the IoT and IoE systems, their

components on the basis of their representation by:

– synchronous, monoprocessing automata and their compositions;

– asynchronous, multiprocessing Petri nets and their compositions.

For behavior analysis of the IoT and IoE systems and their

components frameworks TINA, CPN Tools [27] can be applied.

Simulation is the imitation of the operation of a real-world process or

system over time. The act of simulating something first requires that a

model be developed, this model represents the key characteristics or

behaviors/functions of the selected physical or abstract system or process.

The model represents the system itself, whereas the simulation represents

the operation of the system over time. As before, verification and

validation are independent procedures that are used together for checking

that service or system meets requirements/specifications and that it fulfills

its intended purpose. The behavioral operating and testing check the

conformity of the behavior of the system under check to the behavior of

the reference system, in the mode, respectively, for the first, basic

operating functioning and, for the second, specific testing functioning.

Specifications, behavioral modeling and simulation, features of

validation and verification, elements of operating an testing check of

the extended automata [10, 11] and Petri net [12 – 14] models of IoT

and IoE systems and their components can be performed, in particular,

in frameworks TINA, CPN Tools. Frameworks TINA, CPN Tools have

the following features:

TINA (TIme petri Net Analyzer) [27] is a toolbox for the editing

and analyzing Petri nets and Time Petri nets, with possibly inhibitor

and read arcs, Time Petri Nets, with possibly priorities and

stopwatches, and an extension of Time Petri Nets with data handling

called Time Transition Systems. The toolbox includes an editor for

graphical or textual description of Petri nets and Time Petri nets. TINA

can perform construction of reachability graphs, perform structural and

path analysis. It also has a conversion tool that translates among several

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

58

Petri net formats. TINA accepts as input, descriptions of a Petri net or

Time Petri net in textual (.net, .pnml, .tpn formats) or graphical form

(.ndr format of files produced by nd, .pnml with graphics). Here “nd” is

the textual/graphical editor of TINA called NetDraw. TINA provides a

number of options for output formats depending on the flags selected.

Options those were useful my thesis were a textual format printing full

results and a textual format printing a summary of results. TINA also

outputs graphs for various available model checkers and equivalence

checkers.

CPN Tools [27] is a tool for editing, simulating and analyzing

Colored Petri Nets. The GUI is based on advanced interaction

techniques, such as toolglasses, marking menus, and bi-manual

interaction. Feedback facilities provide contextual error messages and

indicate dependency relationships between net elements. The tool

features incremental syntax checking and code generation which take

place while a net is being constructed. A fast simulator efficiently

handles both untimed and timed nets. Full and partial state spaces can

be generated and analyzed, and a standard state space report contains

information such as boundedness properties and liveness properties.

The functionality of the simulation engine and state space facilities are

similar to the corresponding components in Design/CPN, which is a

widespread tool for Colored Petri Nets.

Thus, these features of TINA, CPN Tools allow the following

stages of behavioral analysis: Stage 1. Specifications/modeling of IoT

and IoE of systems and their components in modes: synchronous;

asynchronous/event; sequential; parallel. Stage 2. Simulation in modes:

step by step; automatic; graph of attainable states and markings. Stage

3. Analysis of correctness for steps: unattainable states and markings;

dead-end states and markings; infinite cycles; multiplying markings.

Stage 4. Compositional verification for adjacent subsystems of steps:

spatial network compositions; spatial hierarchical compositions;

temporal network compositions; temporal hierarchical compositions.

Stage 5. Operating and testing check for: neighborhoods of states,

positions, transition; Rabin-Scott automata for identifiers; operating and

testing primitives and fragments; recognizing and check experiments.

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

59

17.2.2 Resource imitating modeling and simulation on base

of functioning of IoT and IoE systems and their components

using QS

Resource imitating modeling, simulation and features of

verification of functioning of IoT and IoE systems and their

components (in future – end-point sensors/actuators, end-point

controllers, zone brokers/routers/access-points, system servers, end-

user/administrator terminals and their special subcomponents – buffers,

interfaces, memory, control, analyze), that using QS is performed

taking into account the basic architecture of IoT and IoE, its

components, topological intercomponent structure of interactions (two-

point, one-way, star, tree, hierarchical and cluster).

As noted, the structural-functional features of IoT and IoE and

their components and also the processes of loading their resources

affect the classification of QS with laws for queues, service devices and

streams for IoT and IoE. Basic classes of QS for IoT and IoE systems

can be represented as simple and difficult [8, 9].

Simple classes – single-channel, without expenses and expectation,

with an unlimited length of turn and unlimited waiting time and also

with streams of simple classes including uniform, regular, recurrent,

stationary and ordinary classes and difficult classes: non-uniform,

irregular, not recurrent, non-stationary, extraordinary.

Difficult classes – multichannel with expenses, expectation, a

limited length of turn, limited waiting time, Markov and non-Markov –

with streams of simple and difficult classes described above.

The QS is possible and appropriate to apply also with more

detailed descriptions of processes for resources and their consumption

in IoT and IoE systems, their components and topological interaction

structure.

In particular, QS can consider the peculiarities of their

architecture, multi-level, advanced technologies, including IoT and IoE.

These special approaches, architectures, structures and their properties,

defining the features of models and methods of IoT and IoE for QS,

determine the technology of construction – defining, analysis,

modeling, simulation and verification, which contains the following 4

stages.

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

60

Stage 1 is executed for construction of components of the general

static, spatial topological structure for subsystems of IoT and IoE by

models of some type of QS and their objects and components by steps

for: end-point sensors/actuators (step 1), end-point controllers –

decision making units (step 2), brokers/routers/ access points (step 3),

servers (step 4), end-user/administration terminals/work stations (step

5), buffers/memory/storages for all components (step 6),

intercomponent interfaces (transport units) for all components (step 7).

Stage 2 provides designing of the general static spatial topological

structure of subsystem of IoT and IoE through the intercomponent

interfaces by interconnection of models of some type of QS and their

objects and topological properties by steps for: end-point

sensors/actuators – end-point controllers connection, as point-to-point,

star (step 1), end-point controllers – brokers/routers/access points, as

point-to-point, star (step 2), brokers/ routers/access points –

brokers/routers/ /access points, as point-to-point, one-way, star, tree,

hierarchical, hammocks, cycles, mesh and cluster (step 3)

brokers/routers/access points – servers, as point-to-point, star (step 4),

brokers/routers/access points – end-user/ /administration terminals/work

stations, as point-to-point, star (step 5), servers – end-user/administration

terminals/ /work stations, as point-to-point, star (step 6), servers –

servers, as point-to-point, one-way, star, tree, hierarchical, hammocks,

cycles, mesh and cluster (step 7), end-user/administration terminals/work

stations – end-user/administration terminals/work stations, as point-to-

point, one-way, star, tree, hierarchical, mesh and cluster.

Stage 3 is performed for construction of the general static spatial

structure of data flows for the developed resource, transport/service and

computer subsystem of IoT and IoE by models of service flows for some

type of QS and their objects and properties – bandwidth, queue length,

transmission time, delay, transmission errors, its values for individual

queues and service devices – individual graph nodes of service flows

(step 1), fragments (graph structures) of service flows and service flows

generally (step 2), preselected technological standards, interface and

communication protocols of computer networks and IoT and IoE for the

all above QS models (step 3).

Stage 4 provides designing of the general dynamic temporal

structure of data flows for the developed resource, transport/service and

computer subsystem of IoT and IoE by models of service flows for

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

61

some type of QS and their objects – queues and service devices by steps

of defining, analysis, modeling, simulation and verification of lows of

distribution of values of service flows for QS-properties on base types

of service flows – uniform/non-uniform, regular/irregular,

recurrent/not-recurrent, stationary/non-steady, /ordinary/extraordinary,

continuity/discreteness – for individual queues and service devices –

individual graph nodes of service flows (step 1), fragments (graph

structures) of service flows and service flows generally (step 2), post

selected technological standards, interface and communication

protocols of computer networks and IoT and IoE, based on analysis all

above QS-models (step 3).

Special spatial and temporal resource and transport/service EGS

or/and MAS with special EGS- and MAS-models is formed by QS-

models (in life cycle of IoT and IoE) in the sequence of the

corresponding technologies of construction and the following stages:

Stage 1. Developed slow evolution by QS-models of static spatial

structure of EGS or/and MAS into life cycles of static general spatial

topology system structure of IoT and IoE.

Stage 2. Developed fast evolution by QS-models of dynamic

transport/service flows of EGS or/and MAS into life cycles of dynamic

transport/service data flows for temporal hierarchical system structure

of IoT and IoE.

Stage 3. Developed static and dynamic coevolution of EGS’s

or/and composition of MAC’s for slow spatial system structures and

fast transport/service data flows by QS-models.

17.2.3 Behavior imitating modeling of features for functioning

of IoT and IoE systems and their components using Petri Nets

Behavior imitating modeling is performed taking into account

scenarios and functions of the basic architecture, functions of all

components of architecture IoT and IoE, functions of interactions for

ports and interfaces into topological intercomponent structure (two-point,

one-way, star, tree, hierarchical, mesh and cluster).

The general functional features of IoT and IoE and their

components and also their processes affect the classification of

automata and Petri Nets with special functions input/output, storage,

processing for IoT and IoE.

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

62

Special behavioral analysis of IoT and IoE systems and their

components is focused on the tasks of the modeling, simulation,

analyzing correctness, verification, operating and testing check of the

basic, component, interface and subsystem functions presented at the

system level of the IoT and IoE architecture.

This special modeling can essentially rely on evolutionary and

multiagent models and methods.

Thus, these tasks are defined as follows actions for correctness,

verification and also behavioral operating and testing check [28]:

1) The stages and steps for correctness:

Stage 1 confirms that the model has the following properties by

steps: The absence of static locks (Step 1). Completeness (Step 2).

Unambiguous correspondence of states (Step 3). Lack of redundancy

(Step 4). Limitedness (Step 5). Lack of dynamic locks (Step 6). Self-

synchronization (Step 7). Partial correctness (Step 8). Complete

correctness (Step 9). Security (Step 10). Liveliness (Step 11).

Stage 2 selects the basis of the methods for analyzing the

correctness, these methods of check is performed of: Analysis of

achievable states and mapping in classical and improved version (the

method of dialog matrices). Phase diagrams. Adjacent states. Joint

paths that preliminarily identifies static locks.

Stage 3 lowers the dimension of the model of achievable states due

steps: Structural and functional decomposition (Step 1). Previously

created "equivalent" states (Step 2). Limiting the number of parameters

and detectable errors (Step 3).

2) Verification, that includes the following stages and steps:

Stage 1 proves that the specification of the service objects of some

verifiable level, together with: The specification of the lower level, that

are used by these service objects, is consistent with the description

provided by the checked level (Step 1). The specification of the higher

level, that use these service objects, is consistent with the description

provided by the checked level (Step 2).

Stage 2 is performed on the basis of methods of: analysis of the

achievable states and markings in a version extended in comparison

with the analysis of correctness (Step 1); logical induction by the

number of events based on axioms and verification rules (Step 2); time

logic method with confirmation of safety and liveliness (Step 3).

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

63

Stage 3 achieves using the methods of: combining, that is based on

methods of analysis of achievable states and logical induction, where

the development of the system is reflected in the states it achieves, and

the requirements for the system (service) in statements (Step 1);

structural induction, that is on the basis of abstract data types, with the

proof that low-level specification implements high-level specification;

axiomatic, that is in the specifications of formal languages (Step 2).

3) The stages and steps of behavioral operating and testing check:

Stage 1 consists in verifying, that the behavior of the system on the

conceptual boundary with the environment corresponds to the intended

one.

Stage 2 allows to get test scenarios, like recognizing and checking

experiments, in terms of abstract service primitives and data elements

of the system;

Stage 3 consists in passive recognizing experiment of the automata

class by behavioral on-line testing. This is based on a formal method of

recognizing behavioral check in the external flow of the system's

operational functioning based on the identification of reference states

(Step 1) and it establishes the conformity of the reference and verified

models by searching for recognizing primitives and fragments in a

fixed working behavior of the system (Step 2).

Stage 4 executes an active checking experiment of the automaton

class by behavioral testing check. This is based on a formal method of

constructing behavioral checks in the internal specially formed stream

of test functioning of the system based on the identification of reference

states (Step 1) and it establishes the correspondence of the reference

and verified models, for which it embeds checking primitives and

fragments in the test behavior of the system (Step 2).

Special EGS with their genes, chromosomes, individuals,

populations, signatures of operations, relationships, evolutions and

special MAS with their agents, signatures of operations and

relationships are used for consideration of the special behavior of

automata and Petri nets. In particular, they examine correctness by

verification, on-line testing and testing check in life cycle of IoT and

IoE of SBC (in properties: autonomy; mobility; intellectuality;

cooperativeness) for stages: behavior hosting analyzes of stationary and

mobile, static communication network environment, as special slowly

developing EGS or MAS (stage 1); behavior analyze of processes of

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

64

dynamic transport service flows, as special highly developing EGS or

MAS (stage 2); cooperation of behavior analyze of static

communication and dynamic transport evolution systems or MAS’s

(stage 3).

17.3 Simulation and verification of synchronization processes

in IoT and IoE-based systems on the basis of temporal logic

The following objects are taken as input:

1. The specifications of the technical description of the

architecture of components, subsystems IoT and IoE-based systems, as

well as such systems, defining the structure of topological relationships,

functions, information objects, interfaces of topological interactions,

the temporal behavior of functions and scenarios.

2. The previously prepared abstract-temporal models that define

in the LTL and CTL time logic standards the properties of mutual

ordering and synchronization of abstract-time conditions, events and

process relationships for components, IoT and IoE-based systems, as

well as such systems as a whole in analytic-text, tabular, graphical

representations for which it is necessary to perform system time

analysis, simulation and verification, in particular, in the XSPIN tool

environment.

The following objects are considered as output objects: The

obtained correct, verified abstract-temporal models, representing in

LTL and CTL temporal logic standards, the properties of mutual

ordering and synchronization of abstract-temporal conditions, events

and process relations for components, IoT and IoE-based systems, as

well as such systems, for which system time analysis, simulation and

verification, special conditions obtained, parameter, are performed in

the appropriate tool environment, in particular, XSPIN. s and scenarios

for the organization of such analyzes, simulations, verifications, special

results of condition fulfillment, application of parameters and scenarios.

17.3.1 Introduction to specification of synchronization process in

IoT and IoE-based systems by using of temporal logic

The temporal logic of Linear Temporal Logic (LTL) and

Concurrent Temporal Logic (CTL) [15, 16] can be used for analytical

analysis and synthesis of temporal expressions, proof of the conclusions

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

65

in the synchronization of processes in IoT and IoE systems and their

components. Temporal analysis involves the following parts:

1) Temporal classification of objects, properties, conditions,

events, relations, operations, laws of temporal logic of processes of

functioning of IoT and IoE and their components.

2) Special models and methods – logical conclusion, machine of

states, Kripke’s structures, Buchy automata, Promela specifications.

3) Distinctions of objects, properties, the relations, operations,

laws, a logical conclusion of temporal logic of CTL from LTL for

processes of functioning of the IoT and IoE systems and their

components.

4) Features of temporary specification, analytical analysis and

synthesis of expressions, proofs of conclusions at synchronization of

conditions and events in processes of functioning of IoT and IoE and

their components on the basis of their representation by expressions and

conclusions of temporal logic.

Various instrumental environments and linguistic tools for

analytical time analysis and synthesis of LTL and CTL time-logic

expressions and outputs [15, 16] are used to synchronize of processes

of IoT and IoE and their components. Among such environments are, in

particular, Promela language, SPIN and XSPIN framework [27].

These tools allow to solve the following tasks:

1) Description of expressions and conclusions of temporal logic in

Promela language for synchronization of conditions and events of

processes in functioning of IoT and IoE and their components.

2) Specifications of expressions and conclusions of temporal logic

for synchronization of conditions and events of processes in functioning

of IoT and IoE and their components in the tool environments SPIN

and XSPIN.

3) Temporary asynchronous and event interpretation of

expressions and conclusions temporal logic, as analytical temporary

models of processes in functioning of IoT and IoE and their

components, in the tool environments SPIN and XSPIN.

4) Features of the analysis and synthesis of expressions, proofs of

conclusions of temporal logic, as analytical temporary models of

processes in functioning of IoT and IoE and their components, in the

tool environments SPIN and XSPIN.

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

66

17.3.2 Simulation and verification of IoT and IoE-based

systems at the level of temporal logic

Temporal simulation and verification of IoT and IoE-based

systems at the level of Temporal Logic (LTL) [15, 16] have their own

peculiarities for synchronizing the processes and interactions of IoT and

IoE and their components, depending on the task being solved and the

model.

Temporal specifications and modeling of processes synchronization

of the main component and interface functions of IoT and IoE, in

particular, temporary expressions; Kripke's structures; Buchy automata;

Promela language, include stages and steps [29, 30]:

Stage 1. Temporary analysis of conditions and events at

synchronization on the basis of temporary expressions, Kripke's

structures, Promela language, in particular, for: general dynamic,

spatial and temporary structures of IoT and IoE on base of the UML

(Step 1); special structures of dynamic transport service flows on base

of the QS (Step 2); processes of functioning of IoT and IoE, their

components on the basis of their representation by automata and the

Petri nets (Step 3).

Stage 2. Temporary transformation, conclusion and proof of

expressions for conditions and events at synchronization by repeating a

sequence of stages which are considered for temporary analysis.

Stage 3. Temporary verification, optional working and testing

check for functioning of IoT and IoE and their components by repeating

a sequence of stages for temporary analysis and transformation.

17.3.3 Special temporal simulation and verification of IoT

and IoE-based systems

Special temporary analyzes of EGS properties for optimization

or/and MAS properties for distribution are used for temporary

simulation and verification at the following stages:

Stage 1. Temporary EGS- or MAS-analysis of special dynamic,

spatial and temporary entities, relations and properties of components,

subsystems and SBC on base of the UML-evolution or UML-MAS.

Stage 2. Temporary EGS- or MAS-analysis of special structures of

dynamic transport service flows through queues and service devices of

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

67

components, subsystems and SBC on base of the QS-evolution or the

QS-MAS.

Stage 3. Temporary EGS- or MAS-analysis of special processes of

transformation of states, conditions, events, actions, markers in

functioning of components, subsystems and SBC on the base of Petri-

net-evolution or Petri-net-MAS.

17.4 Work related analysis

Development of IoT and IoE systems was prepared by

improvement of formal methods, techniques and tools for designing

and the analysis of the distributed computer systems, Internet

technologies, technologies of Green computing and the

communications directed to resource-saving, functional safety and

information security, having business and social components in the

scientific, industrial and educational sphere.

Three-level system, behavioural, temporary modeling and

simulation of IoT and IoE systems widely uses the formalism of UML

diagrams, foundations of QS and Petri nets, elements of temporal logic

for verification of properties in processes of functioning of the

components and systems in general.

Formation and development of the tools of UML diagrams for the

description of static and dynamic processes of interaction of

components found reflection in works of Grady Booch, James

Rambaugh, Ivar Jacobson. UML became one of new paradigms of the

object-oriented methods on the basis of development in fundamental

elements of the object model, such as abstraction with focus on

interface and separate consideration of behaviour and the

implementation, hierarchy as a way of ordering abstractions,

encapsulation like complementary to abstraction and modularity based

on a common “Divide and conquer” approach [5, 6].

I. Sander, J. Oberg from KHT, Sweden, presented the connection

between a framework dedicated to the enrichment of UML with formal

semantics, a framework based on formal models of computation

supporting validation by simulation, and a system synthesis tool

targeting a flexible platform with well-defined execution services [31].

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

68

UML enhances focus on modeling, and the UML diagrams gain

development for check of nonfunctional properties, including

requirements to performance and the dependability [7].

Queueing Theory is represented for common case of its

implementation in IoT and IoE systems during their life cycle by using

of the QS-models. A number of elementary queueing models with

attention to methods for the analysis of these models, and also to their

applications, including production systems, transportation and stocking

systems, communication systems and information processing systems

important for IoT and IoE area is considered. Queueing models are

particularly useful for the design of these system in terms of layout,

capacities, control and verification [8].

Except elements of queueing theory are applied to providing of the

healthiness for modelling and availability assessment of mobile

healthcare IoT. Exponentially growing technology – Internet of Things

(IoT) in the field of healthcare is spoken about the networked

healthcare and medical architecture. Networked medical and healthcare

devices and their applications create an Internet of Medical Things for

better health monitoring and preventive care with the use of tree

analysis and queueing theory [9].

The use of state machines and the Petri nets for the analyses of

basic, component and interface functions, represented at the system and

structural-behavioral levels of the IoT and IoE architecture is

considered for verification of its behavioral models [10, 11].

Extended automata and Petri nets, which support models and

methods in analyzing the functioning of the distributed systems are

important for research in behavior of the IoT and IoE systems and their

components concerning the various aspects including processes of

specification, modeling, simulation and verification are represented in

[12, 13].

A. Yakovlev from New-Castle University, UK. considered

problematic circuit behaviour, such as potential hazards and deadlocks,

in a reasonable amount of time a technique. It is required which would

avoid exhaustive exploration of the state space of the system, this paper

presents a special type of Petri nets to represent circuits. An algorithm

for automatic conversion of a circuit netlist into a behaviourally

equivalent Petri net is proposed. Once the circuit Petri net is

constructed and composed with the provided environment specification,

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

69

the presence and reachability of troublesome states is verified by using

methods based on finite prefixes of Petri net unfoldings. The shortest

trace leading to a deadlock or a hazard in the circuit Petri net is mapped

back onto the gate-level representation of the circuit, thus assisting a

designer in solving the problem. The method has been automated and

compared against previously existing circuit verification tools [14].

Luca Ferrucci, Marcello M. Bersani and Manuel Mazzara describe

a business workflow case study with abnormal behavior management

and demonstrate how temporal logics and model checking can provide

a methodology to iteratively revise the design and obtain a correct-by

construction system [32].

Multi-agent and evolutionary approaches, genetic algorithms

applied for research in behavior of the IoT and IoE systems and their

components considered are examined in a point of the life cycle.

Genetic algorithms, the best-known technique in the area of

evolutionary computations, numerical optimization and various

applications of evolutions programs important for IoT and IoE systems

are represented in [20 – 23].

The impact of the IoT and IoE systems on society, a problem of

dependable IoT development for human and industry, techniques of

modelling and the assessment for dependable and secure IoT,

implementation of IoT for smart cities, business and industry

application are considered in [2, 30].

Conclusions and questions

The formation of a knowledge system of a formalized

description, analysis and synthesis of Internet of Things systems is

becoming an important part of the process of training specialists in the

field of computer science. Such formalization presupposes a formal

study of the models of the components of IoT and IoT as a whole, the

modeling and verification of their properties and the process of

functioning.

At the system behavioral level of IoT, research is carried out for

components, subsystems and IoT as a whole, taking into account their

structural, functional, informational, and interface features.

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

70

In this section, a three-level system, behavioral, and temporal

modeling and simulation of IoT systems is considered using UML

diagrams, QS and Petri nets, and time logic, respectively.

Visual modeling, simulation and verification of architectures for

IoT, IoE and IoT SBC systems based on UML visual diagrams are

based on static diagrams that describe the static part of the architecture

in representing the structure, their components, component functions

and information objects, and intercomponent interfaces with their

formats conditions, events and means of processing, as well as on

dynamic diagrams, which are used to describe the dynamic part of the

architecture in an ordered, temporal representation of processes, their

synchronization and interaction of conditions, events and means of

processing.

Resource models of building, resource simulation and

verification of architectures for IoT, IoE and IoT SBC systems based on

queuing systems (QS) and queuing nets QS during the operation of IoT

and IoE systems and their components, which is performed basic

architecture, its components, structure of topological interaction. In QS,

it is possible and appropriate to use a detailed description of the

processes for resources and their consumption in the IoT and IoE

systems, their components and the structure of the topological

interaction.

Behavioral models, simulation, correctness analysis, verification

and testing of architectures and processes for IoT, IoE and IoT SBC

systems based on advanced state machines and Petri nets, that are

focused on the analyses of basic, component and interface functions,

presented at the system and structural-behavioral levels of the IoT and

IoE architecture.

In the process of such analysis, special evolutionary genetic

systems with evolutions, their genes, individuals, populations,

signatures of operations and relationships, and also multi-agent systems

with their agents, signatures of operations and relationships, properties

of autonomy, mobility, intellectuality, cooperativity are used for the

special behavior of automata and Petri nets in the life cycle of IoT and

IoE SBC.

The construction of temporal models, temporal simulation,

synchronization check and verification of IoT, IoE and IoT SBC

systems are based on LTL and CTL temporal logic taking into account

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

71

time delays and synchronization features of IoT and IoE processes and

their components depending on the tasks they solve.

1. What can describe and model UML diagrams, SMS resource

models, automata and Petri nets, temporary logic?

2. What features distinguish tool environments Star UML, MS

Visual.NET (UML), ExtendSim Demo, CPN Tools, SPIN?

3. What and how to simulate UML diagrams?

4. What are the features of verification UML diagrams?

5. What are the features of static UML diagrams, which static

diagrams are used for visual analysis of IoT, IoE and IoT SBC?

6. What are the features of dynamic UML diagrams, which

dynamic diagrams are used for visual analysis of IoT, IoE and IoT

SBC?

7. What components and QS types are applicable for IoT, IoE and

IoT SBC analysis?

8. What and how can QS be modeled in IoT, IoE and IoT SBC

systems?

9. What are the features of QS verification for IoT, IoE and IoT

SBC systems?

10. What are the features of QS application at different levels of

IoT, IoE and IoT SBC systems?

11. What and how do they allow to simulate automatons and Petri

nets in IoT, IoE and IoT SBC systems?

12. What are the features of verification and testing of machines

and Petri QS networks for IoT, IoE and IoT SBC systems?

13. What is the difference between evolutionary and multi-agent

modeling and verification of automatics and Petri QS networks for IoT,

IoE and IoT SBC systems?

14. What and how do you model temporal models based on LTL

and CTL temporal logic in IoT, IoE and IoT SBC systems?

15. What are the features of synchronization and verification of

temporal models based on LTL and CTL temporal logic for IoT, IoE

and IoT SBC systems?

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

72

References

1. Pallavi Sethi and Smruti R. Sarangi Internet of Things: Architectures,

Protocols, and Applications // Journal of Electrical and Computer Engineering

Volume 2017, Article ID 9324035, 25 p.

https://doi.org/10.1155/2017/9324035

2. Dependable IoT for Human and Industry: Modeling, Architecting,

Implementation, Vyacheslav Kharchenko, Ah Lian Kor, Andrzej Rucinski

(Eds), River Publishers Series in Information Science and Technology, 2018,

450 p.

3. Tara Salman Networking Protocols and Standards for Internet of

Things. – https://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html

4. Saber Talari, Miadreza Shafie-khah, Pierluigi Siano, Vincenzo Loia,

Aurelio Tommasetti and João P. S. Catalão. A Review of Smart Cities Based

on the Internet of Things Concept, Energies 2017, 10, 421. 23 p.

http://www.mdpi.com/1996-1073/10/4/421/pdf

5. Rambaugh James The unified modeling language reference manual –

2-nd edition / James Rambaugh, Ivar Jacobson, Grady Booch. Addison-

Wesley on Web: http://www.awprofessional.com Available from:

https://www.utdallas.edu/~chung/Fujitsu/UML_2.0/Rumbaugh--

UML_2.0_Reference_CD.pdf.

6. Grady Booch James Rumbaugh Ivar Jacobson The Unified Modeling

Language User Guide. Addison-Wesley Longman Inc., 1999. 391 p. Available

from: https://pdfs.semanticscholar

.org/fc51/1dcebd3dae76133d5dbbda4250bebd0fb5e3.pdf

7. Toledo Rodríguez F., Lonetti F., Bertolino A., Polo Usaola M., Pérez

L. B. Extending UML testing profile towards non-functional test modeling

Second International Conference on Model-Driven Engineering and Software

Development, pp. 488–497, Lisbon, 7 - 9 January 2014.

8. Ivo Adan, Jacques Resing, Queueing Systems. Department of

Mathematics and Computing Science Eindhoven University of Technology,

March 26, 2015. 182 p. Available from:

https://www.win.tue.nl/~iadan/queueing.pdf

9. A. A. Strielkina, D. D. Uzun, V. S. Kharchenko, A. H. Tetskyi.

Modelling and Availability Assessment of Mobile Healthcare IoT Using Tree

Analysis and Queueing Theory. In book: Dependable IoT for Human and

Industry: Modeling, Architecting, Implementation, Vyacheslav Kharchenko,

Ah Lian Kor, Andrzej Rucinski (Eds.), River Publishers Series in Information

Science and Technology, 2018.

10. Javier Esparza Automata theory. An algorithmic approach. Lecture

Notes. August 26, 2017. 321 p. Available from:

https://www7.in.tum.de/~esparza/autoskript.pdf

https://doi.org/10.1155/2017/9324035
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html
http://www.mdpi.com/1996-1073/10/4/421/pdf
http://www.awprofessional.com/
https://www.utdallas.edu/~chung/Fujitsu/UML_2.0/Rumbaugh--UML_2.0_Reference_CD.pdf
https://www.utdallas.edu/~chung/Fujitsu/UML_2.0/Rumbaugh--UML_2.0_Reference_CD.pdf
https://openportal.isti.cnr.it/results?option=com_dnetindexclient&view=doc&id=people______::164d7a32a013309d53ae685e1f999028
https://www.win.tue.nl/~iadan/queueing.pdf
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www7.in.tum.de/~esparza/autoskript.pdf

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

73

11. Y. Kondratenko, O. Kozlov, A. Topalov, O. Korobko, O. Gerasin.

Automation of Control Processes in Specialized Pyrolysis Complexes Based

on Industrial Internet of Things. In book: Dependable IoT for Human and

Industry: Modeling, Architecting, Implementation, Vyacheslav Kharchenko,

Ah Lian Kor, Andrzej Rucinski (Eds.), River Publishers Series in Information

Science and Technology, 2018.

12. Jorg Desel, Javier Esparza Free Choice Petri Nets. Cambridge

University Press, Cambridge, 1995. 256 p. Available from:

https://www7.in.tum.de/~esparza/fcbook-middle.pdf

13. J. Kleijn and A. Yakovlev (Eds). Petri nets and Other Models of

Concurrency – ICATPN 2007, Lecture Notes in Computer Science, vol. 4546,

ISBN 978-3-54073093-4, Springer-Verlag, 2007, 515 p.

14. I. Poliakov, A. Mokhov, A. Rafiev, D. Sokolov and A. Yakovlev.

Automated Verification of Asynchronous Circuits Using Circuit Petri Nets,

Proceedings of the 14th IEEE International Symposium on Asynchronous

Circuits and Systems, Newcastle upon Tyne, UK, April 2008, pp. 161-170.

DOI: 10.1109/ASYNC.2008.18

15. Daniel Shahaf Temporal Logics I: Theory. Tel-Aviv University

November 2007. P. 155. Available from: http://

www.cs.tau.ac.il/~annaz/teaching/TAU_winter08/Seminar/daniel.pdf

16. Patricia Bouyer Model-Checking Timed Temporal Logics. LSV –

CNRS & ENS de Cachan – France. 142 p. Available from:

http://www.lsv.fr/~bouyer/files/tfit08.pdf

17. For Programmer (UML diagrams in Visual Studio Feature Pack)

http://cc.ee.ntu.edu.tw/~farn/courses/BCC/NTUEE/2012.spring

/vs.uml.instruction.pdf

18. Dan Simon Evolutionary Optimization Algorithms. Biologically-

Inspired and Population-Based Approaches to Computer Intelligence. Wiley,

Cleveland State University, 2013. 727 p.

https://books.google.com.ua/books?hl=en&lr=&id=gwUwIEPqk30C&oi=fnd

&pg=PP1&dq=computer+evolutionary-

genetic+systems+pdf&ots=GLm3DqUag2&sig=UeVaj6EE41SAdXKgEuMM

Q6LtUyM&redir_esc=y#v=onepage&q=computer%20evolutionary-

genetic%20systems%20pdf&f=false

19. Yoav Shoham, Kevin Leyton-Brown Multiagent Systems.

Algorithmic, Game-Theoretic, and Logical Foundations. Revision 1.1. Shoham

and Leyton-Brown, 2010. 532 p. http://www.masfoundations.org/mas.pdf

20. A. Sugak, O. Martynyuk, O. Drozd. The Hybrid Agent Model of

Behavioral Testing, International Journal of Computing, 2015, Volume 14,

Issue 4, Ternopil, pp. 232-244.

https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www7.in.tum.de/~esparza/fcbook-middle.pdf
https://doi.org/10.1109/ASYNC.2008.18
http://www.lsv.fr/~bouyer/files/tfit08.pdf
http://cc.ee.ntu.edu.tw/~farn/courses/BCC/NTUEE/2012.spring%20/vs.uml.instruction.pdf
http://cc.ee.ntu.edu.tw/~farn/courses/BCC/NTUEE/2012.spring%20/vs.uml.instruction.pdf
https://books.google.com.ua/books?hl=en&lr=&id=gwUwIEPqk30C&oi=fnd&pg=PP1&dq=computer+evolutionary-genetic+systems+pdf&ots=GLm3DqUag2&sig=UeVaj6EE41SAdXKgEuMMQ6LtUyM&redir_esc=y#v=onepage&q=computer%20evolutionary-genetic%20systems%20pdf&f=false
https://books.google.com.ua/books?hl=en&lr=&id=gwUwIEPqk30C&oi=fnd&pg=PP1&dq=computer+evolutionary-genetic+systems+pdf&ots=GLm3DqUag2&sig=UeVaj6EE41SAdXKgEuMMQ6LtUyM&redir_esc=y#v=onepage&q=computer%20evolutionary-genetic%20systems%20pdf&f=false
https://books.google.com.ua/books?hl=en&lr=&id=gwUwIEPqk30C&oi=fnd&pg=PP1&dq=computer+evolutionary-genetic+systems+pdf&ots=GLm3DqUag2&sig=UeVaj6EE41SAdXKgEuMMQ6LtUyM&redir_esc=y#v=onepage&q=computer%20evolutionary-genetic%20systems%20pdf&f=false
https://books.google.com.ua/books?hl=en&lr=&id=gwUwIEPqk30C&oi=fnd&pg=PP1&dq=computer+evolutionary-genetic+systems+pdf&ots=GLm3DqUag2&sig=UeVaj6EE41SAdXKgEuMMQ6LtUyM&redir_esc=y#v=onepage&q=computer%20evolutionary-genetic%20systems%20pdf&f=false
https://books.google.com.ua/books?hl=en&lr=&id=gwUwIEPqk30C&oi=fnd&pg=PP1&dq=computer+evolutionary-genetic+systems+pdf&ots=GLm3DqUag2&sig=UeVaj6EE41SAdXKgEuMMQ6LtUyM&redir_esc=y#v=onepage&q=computer%20evolutionary-genetic%20systems%20pdf&f=false
http://www.masfoundations.org/mas.pdf

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

74

21. Zbigniev Michalewicz Genetic Algorithms + Data Structures =

Evolution Programs. Third Edition. / Springer, 1996. 388 p.

http://web.ist.utl.pt/adriano.simoes/tese/referencias/Michalewicz%20Z.%20Ge

netic%20Algorithms%20+%20Data%20Structures%20=%20Evolution%20Pro

grams%20%283ed%29.PDF

22. A. Sugak, O. Martynyuk, O. Drozd. Models of the Mutation and

Immunity in Test Behavioral Evolution, Proceedings of the 2015 8th IEEE

International Conference on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications, 2015, Warsaw, Poland, pp.

790-795.

23. O. Martynyuk, A. Sugak, D. Martynyuk, O. Drozd. Evolutionary

Network of Testing of the Distributed Information Systems, Proceedings of the

2017 9th IEEE International Conference on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications, 2017,

Bucharest, Romania, pp. 888-893.

https://ieeexplore.ieee.org/document/8095215

24. ExtendSim. User Guide / Imagine That Inc. 2007. P. 808.

http://www.edgestone-it.com/papers/ExtendSim7_Manual.pdf

25. I. Skarga-Bandurova, М. Derkach, A. Velykzhanin, A Framework for

Real-Time Public Transport Information Acquisition and Arrival Time

Prediction Based on GPS Data. In book: Dependable IoT for Human and

Industry: Modeling, Architecting, Implementation, Vyacheslav Kharchenko,

Ah Lian Kor, Andrzej Rucinski (Eds.), River Publishers Series in Information

Science and Technology, 2018.

26. OMNeT++. Simulation Manual. Version 5.4.1 / András Varga and

OpenSim Ltd. 2016. 538 p.

https://www.omnetpp.org/doc/omnetpp/SimulationManual.pdf

27. Michael Westergaard CPN Tools / Eindhoven, 2010. – P. 46.

https://westergaard.eu/wp-content/uploads/2010/09/CPN-Tools.pdf

28. Anduo Wang Formal Analysis of Network Protocols. University of

Pennsylvania Department of Computer and Information Science Technical

Report No. MS-CIS-10-16. 2010. 32 p.

https://repository.upenn.edu/cgi/viewcontent.cgi?article=1970&context=cis_re

ports

29. Daniel Câmara Formal Verification of Communication Protocols for

Wireless Networks. Belo Horizonte, 2009. 136 p.

http://www.eurecom.fr/~camara/files/ThesisCamara_FormalVerification.pdf

30. A. Boyarchuk, V. Kharchenko, O. Illiashenko, D. Maevsky, C.

Phillips, A. Plakhteev, L. Vystorobska. Internet of Things for Human and

Industry Applications: ALIOT Based Curriculum. In book: Dependable IoT

for Human and Industry: Modeling, Architecting, Implementation, Vyacheslav

http://web.ist.utl.pt/adriano.simoes/tese/referencias/Michalewicz%20Z.%20Genetic%20Algorithms%20+%20Data%20Structures%20=%20Evolution%20Programs%20%283ed%29.PDF
http://web.ist.utl.pt/adriano.simoes/tese/referencias/Michalewicz%20Z.%20Genetic%20Algorithms%20+%20Data%20Structures%20=%20Evolution%20Programs%20%283ed%29.PDF
http://web.ist.utl.pt/adriano.simoes/tese/referencias/Michalewicz%20Z.%20Genetic%20Algorithms%20+%20Data%20Structures%20=%20Evolution%20Programs%20%283ed%29.PDF
https://ieeexplore.ieee.org/document/8095215
http://www.edgestone-it.com/papers/ExtendSim7_Manual.pdf
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www.omnetpp.org/doc/omnetpp/SimulationManual.pdf
https://westergaard.eu/wp-content/uploads/2010/09/CPN-Tools.pdf
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1970&context=cis_reports
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1970&context=cis_reports
http://www.eurecom.fr/~camara/files/ThesisCamara_FormalVerification.pdf

17. Three-Level Simulation of IoT/IoE Based Systems with the Use of UML Diagrams

75

Kharchenko, Ah Lian Kor, Andrzej Rucinski (Eds.), River Publishers Series in

Information Science and Technology, 2018.

31. P. I. Diallo, S.-H. Attarzadeh-Niaki, F. Robino, I. Sander, J.

Champeau, J. Oberg. A formal, model-driven design flow for system

simulation and multi-core implementation. 10th IEEE International

Symposium on Industrial Embedded Systems (SIES), 2015.

32. L. Ferrucci, M. M. Bersani, M. Mazzara. An LTL semantics of

business workflows with recovery. 9th International Conference on Software

Paradigm Trends (ICSOFT-PT), 2014.

https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology
https://www.riverpublishers.com/series.php?msg=Information_Science_and_Technology

18. Markov’s Modelling of IoT Systems

76

18. MARKOV’S MODELLING OF IOT SYSTEMS

DrS. Prof. V. S. Kharchenko, Dr., Ass. Prof. M. O. Kolisnyk (KhAI)

Contents

Abbreviations .. 77

18.1 Features of Markov’s modeling of IoT systems 78

18.1.1 Principles of Markov’s and semi Markov’s modeling.............. 78

18.1.2 Features and assumptions for functionality modeling 79

18.1.3 Features and assumptions for availability modeling 81

18.1.4 Metrics and indicators .. 83

18.2 Markov’s modeling of IoT systems reliability and availability ... 85

18.2.1 Technique ... 86

18.2.2 Development of models .. 88

18.2.3 Research of models ... 90

18.3 Markov’s modeling of IoT systems cyber security and availability

 ... 93

18.3.1 Technique ... 93

18.3.2 Development of Markov model of IoT system functioning 94

18.3.3 Research of models ... 96

18.4 Semi Markov’s modeling of IoT systems 99

18.4.1 Technique ... 99

18.5 Work related analysis 105

Conclusions and questions... 106

References ... 107

 18. Markov’s Modelling of IoT Systems

77

Abbreviations

DoS – Denial-of-Service

DDoS – Distributed Denial-of-Service

HMM – Hidden Markov Model

HSMM - Hidden Semi-Markov Model

IoT – Internet of Things

MTBF - Mean Time Between Failures

MTTF - Mean Time to Failure

MTTR - Mean Time to Recover

NLP - Natural Language Processing

RUL - Remaining Useful Lifetime

SA - Service Available

SMR - Service May Recover

SMNR - Service May Not Recover

SNA - Service Not Available

TTF - Time to Failure

TTR - Time to Recover

18. Markov’s Modelling of IoT Systems

78

18.1 Features of Markov’s modeling of IoT systems

This section describes the features of Markov modeling in the

Internet of Things systems. This book is intended for MSc-, PhD-

students and engineers, who will be involved in design and

development of such integrated projects, so we will provide an

overview of the modeling of the function process of IoT system with

use of Markov models. This chapter covers the following topics:

- Principles of Markov’s and semi Markov’s modeling.

- Features and assumptions for functionality modeling.

- Features and assumptions for availability modeling.

- Metrics and indicators.

To start with, we will consider characteristics of the Big Data and

try to highlight the most important from the IoT point of view ones.

18.1.1 Principles of Markov’s and semi Markov’s modeling

The question of the expediency of using the theory of Markov

processes for solving one or another practical problem is determined,

first of all, by its content and the possibility of constructing for it a

Markov model, on the one hand, not very complicated, and on the other

- that adequately reflects the regularities that are inherent in the task.

The correct justification for the fundamental possibility of using the

Markov model is the first and very crucial stage in solving the problem.

The second stage, no less responsible, is to decide on the specific type

of Markov model to use and with which parameters. Of course, one can

formulate the problem differently - both as a continuous one and as a

discrete one. Models based on Markov chains are simpler and clearer

than models that use discrete or continuous Markov processes. In

addition, they are easier to model with the use of computer technology.

Therefore, if there are no compelling reasons to use other models,

Markov chains should be preferred. An important feature of the discrete

Markov process is the property of singularity, which means, in this

case, that the probability of transition to any new state for a short time

Δt is significantly less than the probability that the state remains

unchanged.

 18. Markov’s Modelling of IoT Systems

79

18.1.2 Features and assumptions for functionality modeling

A Markov model [1] is a stochastic method for randomly changing

systems where it is assumed that future states do not depend on past

states. These models show all possible states as well as the transitions,

rate of transitions and probabilities between them.

Markov models are often used to model the probabilities of

different states and the rates of transitions among them. The method is

generally used to model systems. Markov models can also be used to

recognize patterns, make predictions and to learn the statistics of

sequential data.

There are four types of Markov models that are used situationally

[2]:

 Markov chain - used by systems that are autonomous and have

fully observable states.

 Hidden Markov model - used by systems that are autonomous

where the state is partially observable.

 Markov decision processes - used by controlled systems with a

fully observable state.

 Partially observable Markov decision processes - used by

controlled systems where the state is partially observable.

Markov models can be expressed in equations or in graphical

models. Graphic Markov models typically use circles (each containing

states) and directional arrows to indicate possible transitional changes

between them. The directional arrows are labeled with the rate or the

variable one for the rate. Applications of Markov modeling include

modeling languages, natural language processing (NLP), image

processing, bioinformatics, speech recognition and modeling computer

hardware and software systems.

Consider the random process X(t) in which the region T of

definition of an argument is a continuous set of points t ∈ T, and the

space of states is a discrete set of points S, l ∈S, l= l…L. At any

random moments of time t0t1… changes in the state may occur. Such

a process is a discrete random function.

Definition [2]. The discrete Markov process is called a discrete

random function for which the one-dimensional distribution function

https://whatis.techtarget.com/definition/stochastic
https://whatis.techtarget.com/definition/probability
https://searchwindowsserver.techtarget.com/definition/system
https://searchbusinessanalytics.techtarget.com/definition/natural-language-processing-NLP
https://searchoracle.techtarget.com/definition/bioinformatics
https://searchcrm.techtarget.com/definition/voice-recognition

18. Markov’s Modelling of IoT Systems

80

Note: From the above equality it follows that the probability that

a random variable

will be taken value, provided that the random variables take values

X(tN), is determined by the equality xN ∈ S if random values

X(t0),…,X(tN-1).
Semi-Markov [3-7] is called a discrete random process X(t), one-

step transitions of which from the state j (j=1…L) to the state k

(j=1…L) are described by the matrix Π of the probabilities of one-step

transitions with the elements πjk, and the time of stay in the state Tjk

until the transition j to the state k by matrix F(t) of probability

density with elements fjk(t) (fig. 18.1).

Remark 1. For the complete probabilistic description of the semi-

Markov process, in addition to the matrices Π, we must set the initial

conditions, namely the state F(t) i j at the instant of time t0.

Remark 2. A characteristic feature of the semi-Markov process is

that the matrices Π and F(t) do not depend on the behavior of the

process outside the considered steps.

Fig. 18.1 – Semi-Markov model

Remark 3. If the term of stay in the states is a value Tc (with fjk(t)

= δ(t-Tc), then the semi-Markov process at time points t=0, Tc, 2Tc is a

 18. Markov’s Modelling of IoT Systems

81

homogeneous Markov chain, which is called an embedded Markov

chain.

Remark 4. In general, the semi-Markov process is not Markov,

but it is proved that, in a particular case, the probability density fjk(t)

(j=1…L) does not depend on the states j and k and are described by

the exponential function, fjk(t) = νexp(1t), ν is a constant; the semi-

Markov process is a discrete Markov process.

18.1.3 Features and assumptions for availability modeling

IoT systems combined with their high-availability requirements

means that these systems are more at risk of unintended, non-malicious

downtime [8-13]. When designing IoT system, it is necessary to

provide the security of the operation and the reliability of hardware and

software components of the system. Understanding new

communication protocols, hardware types, and obscure operating

systems is difficult, making IoT security an incredible challenge.

In the network equipment that used for the organization of IoT

system, according to statistics, more and more vulnerabilities found in

software code. When exposed to hacker attacks via these vulnerabilities

can be stolen proprietary information of the company, and making

failure of the software and hardware components of network devices

and servers. Manufacturers proposes decisions on the release of patch,

redundancy of components to reduce the risks of vulnerabilities of

network equipment in IoT. However, vulnerabilities are discovered

again and again, and the attacks translates them inoperable technical

condition. In order to provide network dependability of IoT, which

includes providing a high reliability and high safety at the required

level, it is necessary to develop a mathematical model for a more

accurate quantification.

Assumptions in the development of the model [14]:

 stream hardware failures of the system obeys Poisson

distribution;

 the flow of failures of subsystems is subject to Poisson for-

grabs, as the results of monitoring and diagnostics, anti-virus software

testing corrected secondary error (the result of the accumulation of the

effects of primary errors and defects, bookmarks), and to fix a

malfunction or failure of software, eliminating or the consequences of

18. Markov’s Modelling of IoT Systems

82

software bookmarks and code vulnerabilities, DoS- and DDoS-attacks,

the number of primary software defects permanently. Therefore, the

assumption is true, that the flow of software failures obeys Poisson

distribution, the failure rate is constant;

 the model does not take into account that eliminating software

vulnerabilities and design faults changes the parameters of the flow of

failures (and recovering). To investigate the IoT system dependability

use the theory of Markov models, as the failure rates of hardware and

software and the availability of software vulnerabilities is constant.

Fig. 18.2 is a Markov graph of functioning of the main

subsystems of IoT system, - the rate of failure or attack, - the rate of

the recovery system.

The basic state of the system [14]:

1) Normal condition (up-state) system.

2) Failure due to faulty feeder from the stationary power supply

(220 V).

3) Failure due to a malfunction of the second feeder (a solar

battery).

4) Failure of the battery in the UPS.

5) Reconfigure the power subsystem;

6) Failure of the cable connecting the Router and Server.

7) Failure of the cable connecting the UPS and Switch, and / or

the Router, and / or Server.

8) Failure of the cable connecting the Router and Switch.

9) Firewall Denial.

10) Refusal Server due to a fault server components, or exposure

to attacks on the code server system software with vulnerabilities.

11) Failure Router as a result of failure of the router components,

or the impact of the attacks on the code of the router operating system

vulnerabilities.

12) Switch Failure due to a fault switch components, or exposure

to an attack on the system software code switch with the presence of

vulnerabilities.

13) Partial failure of the system due to the failure of cable

connecting any or multiple sensors and IP cameras.

14) Partial failure of the system due to the failure of any one or

more sensors and IP cameras.

 18. Markov’s Modelling of IoT Systems

83

15) Failure of the system.

IoT system availability function AC(t) is defined as the sum of

the probabilities of staying the system in an up-states:

AC(t) = P1(t) + P5(t).

Solving the system of Kolmogorov-Chapmen equations, can get

the value of the availability function components and SBS network, the

number of network failures due to software vulnerabilities, and how

and with what intensity the system is restored after such failures. It

follows that service availability, service continuity, cyber security, data

integrity, resilience and high dependability of software and hardware

should be inherent in IoT networks.

12
13

16

1415

101

51

91

131

45

4

615

35

14

25

1115

61

815

111

71

121

151

1215

1315

17

1015

915

715

18 19 110

111

112

114

113

910

912

911

141

81

15

4

6

5

1

7

9

11

12

14

13

10

8

2

3

Fig. 18.2 – Markov’s graph of IoT system’s states

18.1.4 Metrics and indicators

Using a unified fail to recovery model that assumes time to failure

(TTF) and time to recover (TTR) are exponentially distributed for all

the three cases. Suppose once the system becomes operational, it takes

certain time to fail again. The average time it takes the system to fail is

called MTTF (mean time to failure). Once the system fails it takes

18. Markov’s Modelling of IoT Systems

84

certain time to recover from failure and return to operational state. The

average time it takes for the system to recover is called MTTR (mean

time to recover). The average time between failures is called MTBF

(mean time between failures) and can be written as

MTBF = MTTF + MTTR, (18.1)

shown in table 18.1.

 Availability is defined as the fraction of time that a component is

operational [15].

Table 18.1 – Metrics for IoT systems maintenance

Metrics: Service Available (SA), Service May Recover (SMR),

Service May Not Recover (SMNR), Service Not Available (SNA) use

for description of cloud availability in IoT infrastructure.

 In all such cases the service requests may encounter unavailable

web service. But it may happen that in next interval some of the

services may be available after QoS satisfaction. Hence two more status

is introduced known as Service may recover and Service may not

recover.

Service Available (SA): This status indicates that the service is

running stable and no invocation failure has happened, for these

requests. Service May Recover (SMR): This status indicates that the

service is not currently available, but chances are there to recover it,

 18. Markov’s Modelling of IoT Systems

85

because this unavailability is not due to failure but it is due to

incompliance of QoS metrics by the controller. Service May Not

Recover (SMNR): This status indicates that the service is not currently

available, but chances are less for recovery.

Service Not Available (SNA): this status indicates that service is

down due to a specified reason. In this approach the metrics

computation is based on invocation of records, the model is simple, and

in this model the short term down is further divided in two sub

categories SMR and SMNR.

Just as inherent reliability can impact operational performance,

maintainability metrics can also have a large impact. These metrics can

include Mean Time to Repair (MTTR), Mean Time to Fault Isolate,

Mean Administrative Logistics Delay Time (MALDT), and wait times.

Maintainability issues can be addressed in a fielded system, whereas

inherent reliability is typically a design function and subject to

engineering improvements only in extreme cases of substandard

performance. Maintainability can be improved by increasing

maintenance resources such as manpower, spares, and repair locations

and by improving the maintenance concept and maintenance decisions.

Unlike design and production efforts to improve inherent reliability,

each of these comes at a significant annual recurring cost.

The metric estimation - it’s a three step approach [15]:

1) Calculate the success percentage for each sequence.

2) Calculate the weighted average of success rates for status

SMR and SMNR.

3) Calculate the time percentage for each status.

18.2 Markov’s modeling of IoT systems reliability and

availability

When designing the Internet of things system, it is necessary to

consider and ensure its reliability and cyber security. To assess the

reliability indicators, the section discusses the features of the

application of the Markov models mathematical apparatus. Chapter

consists of such topics:

1) Technique.

2) Development of models.

3) Research of models.

18. Markov’s Modelling of IoT Systems

86

18.2.1 Technique

Graphical Markov models provide a method of representing

possibly complicated multivariate dependencies in such a way that the

general qualitative features can be understood, that statistical

independencies are highlighted, and that some properties can be derived

directly. Variables are represented by the nodes of a graph. Pairs of

nodes may be joined by an edge. Edges are directed if one variable is a

response to the other variable considered as explanatory, but are

undirected if the variables are on an equal footing. Absence of an edge

typically implies statistical independence, conditional, or marginal

depending on the kind of graph. The need for a number of types of

graph arises because it is helpful to represent a number of different

kinds of dependence structures. Of special importance are chain graphs

in which variables are arranged in a sequence or chain of blocks, the

variables in any one block being on an equal footing, some being

possibly joint responses to variables in the past and some being jointly

explanatory to variables in the future of the block considered. Some

main properties of such systems are outlined, and recent research

results are sketched. Suggestions for further reading are given. As an

illustrative example, some analysis of data on the treatment of chronic

pain is presented.

Types of Markov models [2]:

1) Homogeneous CTMCs (Fig. 18.3).

Fig. 18.3 – Homogeneous Markov model

 18. Markov’s Modelling of IoT Systems

87

- Simplest, most commonly used.

- Markov property always holds.

- Transition rates are constant.

- State holding times are exponentially distributed.

- "Memoryless Property" - time to next transition is not

influenced by the time already spent in the state.

2) Non-homogeneous CTMC (Fig. 18.4).

Fig. 18.4 – Non-homogeneous Markov model

- more complex;

- Markov property always holds;

- transition rates are generalized to be functions of time -

dependent on a "global clock".

The control system example may again be used to illustrate the

difference between a semi-Markov model and the previous two types of

Markov models. Assume that the failure rate of a processor is again

constant. Now, however, assume that the repair duration is a function of

the time f(t) that the processor has been under repair. The state-

transition diagram for the resulting semi-Markov model is shown in the

slide. It is identical to that for the homogeneous CTMC case except that

the repair transition rate is a function of the time z that the processor

has been under repair (i.e. the time that the system has been in state [3-

7]). Semi-Markov models require the most computational effort of all

the Markov model types to solve. They are often produced when

detailed fault/error handling is included in a Markov model. This is the

case because non-constant transitions between states that model fault

handling often depend on the time elapsed since the fault occurred and

handling/recovery commenced rather than on the elapsed mission time.

18. Markov’s Modelling of IoT Systems

88

18.2.2 Development of models

Based on the analysis of standard solutions for the

implementation of IoT system is proposed the wired architecture of the

network. Using for IoT system Internet wire network devices are: router

with Ethernet-ports and wireless access ability, softswitch the second

layer, firewall, power block, server with control software, IP-camera,

sensors, cables [8-13]. The system can operate as a standalone or with

Internet connection.

Assumptions for the developed Markov model of IoT system

availability are the following [16]:

 - the flow of hardware system failures obeys the Poisson

distribution law;

- there is reserve of the server and the router;

- failures caused by software design faults of IoT system

subsystems obeys Poisson distribution, as on the results of monitoring

and diagnostics, testing corrected secondary error (the result of the

accumulation of the effects of primary errors and defects, software

backdoors) to fix a malfunction or failure of the software, remove of

impacts on software vulnerabilities, DoS- and DDoS-attacks, the

number of primary defects in the software permanently;

- the process, which occurs in the system, it is a process without

aftereffect, every time in the future behavior of the system depends

only on the state of the system at this time and does not depend on how

the system arrived at that state.

Therefore, the process has the Markov property. The mode of the

server when software system shutdown and startup cycles in this model

S4 is absent, because in this mode it is impossible to manage the server

remotely.

A Markov model of IoT system subsystems functioning

represented on fig.18.2.3, considering DDoS-attacks and energy modes

of server and router, which has the following states [17-24]: good-

working state (1); the server is fully used with high power consumption

state (2); the server is fully used, the hardware, that are not used, can

enter the low-power mode S1 (3); sleep mode of the server with low

power consumption, a computer can wake up from a keyboard input, a

LAN network or USB device S2 (4); server appears off, power

consumption is reduced to the lowest level S3 (5); server failure (6);

 18. Markov’s Modelling of IoT Systems

89

switching to the backup server device after the server failure (7);

restarting the server software after the software fault (8); successful

DDoS-attack on the server after the firewall failure (9); firewall

software or hardware failure (10); attack on the power supply system

after the firewall failure, that lead the failure of general power system

of IoT system (11); technical condition of switch from the general

power system after its failure on the alternative energy sources (solar,

diesel generator, wind turbine) (12); router status active - sending

packages with high power consumption (13); DDoS- successful attack

on the router (14); good-working state of the router without

transmitting packets - Normal Idle (15); good-working state of the

router without packet transmission Low-Power Idle (16); router

software or hardware failure (17); server software or hardware fault

(18); router hardware or software fail (20); switching to the backup

router device after the router failure (21); restarting the router software

after the router software fault (22).

A system of linear differential equations of the Kolmogorov-

Chapmen composed and solved in the paper with the initial conditions:

∑ 𝑃𝑖(𝑡)22
𝑖=1 = 1, 𝑖 = 1…22, P1(0) = 1. (18.2)

An important indicator of IoT system dependability under the

influence of different kinds of DDoS-attacks is the availability factor.

As an index of IoT system reliability we choose availability function

AC(t), that is defined as the sum of the probabilities of staying the

system in an up-states. Availability function AC(t) is determined from

equation:

AC(t) =P1(t)+P2(t)+P3(t)+P4(t)+P5(t)+P12(t)+P13(t)+

+P15(t)+P16(t), (18.3)

where Pi(t) – probability of good condition IoT system

components.

Solving the system of Kolmogorov-Chapmen equations, we can

get the value of the availability function components and IoT system

after successful DDoS-attacks and with considering energy modes of

the server and the router. It follows that service availability, service

continuity, cyber security, data integrity, resilience and high

18. Markov’s Modelling of IoT Systems

90

dependability of software and hardware should be inherent in IoT

networks.

Fig. 18.5 – A Маrkov model of IoT system’s general subsystems

functioning

18.2.3 Research of models

On the basis of the analysis of statistical data we assess the main

indicators of dependability - AC and built a graph shown in Fig. 18.2.4-

18.2.6. As an example, we give graphical dependencies for different

technical states of the server. We constructed the dependence of the

system availability function (we denote it AC) from the transitions rates

to different states (ij, αij, γij, where i = 𝟏…22 j = 𝟏…𝟐𝟐), which

depend on events occurrence time. The analysis of the Markov’s model

simulation results shows decreases the value of SBC availability

function AC with increase of:

 18. Markov’s Modelling of IoT Systems

91

- the transition rate 218 from an active-power mode of the

server 2 to a state of the server fail 18 (Fig. 18.8);

- the transition rate 1317 from active-power mode of the router

13 to a state of the router failure 17 (Fig. 18.6);

- the transition rate 26 from server’s active-power mode 2 to a

state of the server failure 6 and the transition rate 36 from server’s

low-power mode 3 to a state of the server failure 6 (Fig. 18.7).

Fig. 18.6 – Graph of dependence of SBC AC on the transition

rate 1317 from active power state of the router 13 to a state of the

router failure 17

Increase the transition rate from a good state of a server with full

power consumption 2 to a server failure state 6 (26); from a good state

of a server with a reduced power consumption 3, to the server's failure

state 6 (36) results to AC decrease. With an increase of the transition

rate from a good state 1 to a state with full power consumption 2 (12),

increase the nominal value of AC(t).

18. Markov’s Modelling of IoT Systems

92

Fig. 18.7 – Graph of dependence of SBC AC on the transition rate 26

from active power state of the server 2 to a state of the server failure 6

and the transition rate 36 from server’s low-power mode 3 to a state of

the server failure 6 if 12=30 1/hour; µ61=0,02083 1/hour; µ67=60

1/hour; µ71=20 1/hour

Fig. 18.8 – Graph of dependence of SBC AC on the transition rate 218

from active power state of the server 2 to a state of the server fail 18

Moreover, at a high rate of the transition from the failure state of

the server 6 to the working state 1 (µ61), and also to the reconfiguration

state 7 (µ67), a smoother change in the availability function is observed

than values of µ61, µ67 are low. Moreover, at a high transition rate

from the server failure state 6 to the working state 1 (µ61), and also to

the reconfiguration state 7 (µ67), a smoother change in the availability

 18. Markov’s Modelling of IoT Systems

93

function is observed than at low values of µ61, µ67. With the

transitions rates 12=30 1/hour; µ61=0,02083 1/hour; µ67=60 1/hour;

µ71=20 1/hour – the value of AC with 26=0,004 1/hour is about equal

to 0,9999340. If 12=100000 1/hour; µ61=20 1/hour; µ67=1000

1/hour; µ71=50 1/hour availability function value with 26=0,004

1/hour is equal to 0,9999650. Therefore, it is necessary to choose such

values of SBC parameters at which the availability factor of the

proposed system for any changes in parameters taking into account the

power consumption modes and under states of DoS- and DDoS-attacks

will not change significantly. Reducing the availability function when

increasing the transition rate from a good state with a high power

consumption of the server into a software fail mode occurs due to the

impact of external influences (DoS- and DDoS-attacks), and because of

internal causes associated with defects in the software and/or hardware

of the server. The initial value of the AC is less than 1 when the

transition rate from state 9 to state 2 (92) changes (by the DoS- and

DDoS-attacks influence on the state of the server with high power

consumption if there is a vulnerability in the server firewall), because

the AC is influenced both by external influences (attack), and internal

causes (defects of software and/or hardware). With the increase in the

attack flow to the server through the firewall vulnerability, it is

perceived as a simple increase in the flow of data to the server, which

leads to the server's transition into a good state of high energy

consumption. With a further increase in 92, the change in AC

function. Under the influence of DDoS-attacks, the server, which is in

one of the energy saving modes, will switch to the mode of increased

power consumption. The practical significance of the results is the

following. They allow to assess the availability factor and to develop

recommendations for the IoT system design for reduce the

vulnerabilities of the software.

18.3 Markov’s modeling of IoT systems cyber security and

availability

18.3.1 Technique

When organizing IoT system, it is necessary to take into account

the security, reliability of software and hardware of its components and

their energy consumption modes [16-24]. The Markov model proposed

18. Markov’s Modelling of IoT Systems

94

in [16], describes the process of IoT system functioning taking into

account the attack on the system and the various power modes of the

server and the router. Assumptions taken to construct and research the

advanced IoT system availability model assume a Poisson flow of

failure distribution of hardware and software of the IoT system

components and allow the apparatus of Markov random processes to be

used to estimate its availability. The means of control and diagnostics,

as well as the means of switching to backup units, are considered ideal

(they correctly identify the failed units and perform the switching to

serviceable ones).

18.3.2 Development of Markov model of IoT system

functioning

The description of the states of the improved model (Fig. 18.9) is

similar to [16]. The improved Markov model of IoT system availability

presented in Fig. 18.9 [25] takes into account the possibility of

successful attacks on the router, the transition of the server and the

router to different energy modes, and the installation of software

patches on the vulnerability of the router's firewall without new

vulnerabilities.

For the Markov model, systems of Kolmogorov-Chapman

equations with initial conditions [19]:

P1(0) = 1. (18.4)

The sum of the probabilities of finding the system in each of the

states is 1.

 18. Markov’s Modelling of IoT Systems

95

Fig. 18.9 – A graph of a Markov model of SBC systems functioning

when installed patches on the router firewall and server firewall

To assess the IoT system availability with the conditions of

external factors, such as various attacks on the router, the availability

factor AC was chosen, the value of which for IoT system is defined as

the sum of the probabilities of such systems being in good working

states:

AC = P1(t)+P2(t)+P3(t)+P4(t)+P5(t)+P12(t)+ P13(t)+P15(t)+

P16(t)+P21(t). (18.5)

Pi(t) – probability of operable IoT system states.

18. Markov’s Modelling of IoT Systems

96

18.3.3 Research of models

Fig. 18.10 shows the graphical dependence of the AC with a

change in the rate transition 1317, which is determined by the

difference in the values of AC IoT system using a patch on the router's

firewall and the AC IoT system without a patch. Fig. 18.11 shows the

graphical dependencies of АC1, determined by the difference in the

values of AC IoT system if 1517 changing with installation of patch

on router firewall software and AC IoT system without a patch, and

АC2, determined by the difference in the values of IoT system’s AC if

1617 changing with installation of patch on router firewall software

and IoT system’s AC without a patch (Fig. 18.12). Analysis of changes

in IoT system’s AC when installing a patch on the vulnerabilities of the

router software firewall showed: the router's transition rate from the

Active state (13) to the router's failure state (17) varies slightly

АС=610-9 1/hour (Fig. 18.10, Fig. 18.11). This is explain by loading

the router if impacts an attack without a software firewall patch at low

transition rates 1317=0…210-6 1/hour is close to loading the router in

the active mode if there is a patch, since attacks impacts on the router

gradually, first simulating the active mode of the router; the transition

rate from the Normal (15) state to the router's failure state (17) varies

from АС1=2,9052510-5…2,9044810-5 if 1517 =0…0,0001 1/hour

(fig. 18.3.5); the transition rate from the Low (16) state to the router

failure state (17) varies from АС2=2,904810-5…2,902710-5 if

1617=0…0,0001 1/hour (fig. 18.13).

The research showed that the timely establishment of a patch on

the vulnerability of the router's firewall makes it possible to increase

the value of IoT system’s AC.

To assess IoT system availability, the Markov model was

improved and researched, taking into account the impact of successful

cyber-attacks on the IoT system, failures and fails of hardware and

software components IoT system, the transition of the router in modes

of reduced power consumption, patching the vulnerabilities of the

router firewall software.

 18. Markov’s Modelling of IoT Systems

97

Fig. 18.10 – Dependencies of IoT system’s AC from the

transition rate 1317 with the installation of patches on the router

firewall and without patches

Fig. 18.11 – Dependencies of IoT system’s AC from the

transition rate 1517 with the installation of patches on the router

firewall and without patches

The study showed that installing the patch on the router's firewall

when it is operating in the Active mode has little effect on changing of

the IoT system AC with the patch installed. When the router is

operating in low power mode, the IoT system availability increases by

an order of magnitude when installing the patch on the router firewall

software vulnerabilities, compared to the IoT system AC value without

a patch.

18. Markov’s Modelling of IoT Systems

98

Fig. 18.12 – Dependencies of IoT system’s AC from the

transition rate 1617 from LP_IDLE state in the failure state with the

installation of patches on the router firewall and without patches

Fig. 18.13 – Dependencies of IoT system’s AC1 and АC2

 18. Markov’s Modelling of IoT Systems

99

18.4 Semi Markov’s modeling of IoT systems

18.4.1 Technique

The semi-Markov processes were introduced independently and

almost simultaneously by P. Levy, W. L. Smith and L. Takacs in 1954–

1955. The essential developments of semi-Markov processes theory

were proposed by R.Pyke, E. Cinlar, Koroluk, Turbin, N. Limnios and

G. Oprisan, D. C. Silvestrov. We present only semi-Markov processes

with a discrete state space. A semi-Markov process (Fig.18.14) is

constructed by the Markov renewal process which is defined by the

renewal kernel and the initial distribution or by another characteristics

which are equivalent to the renewal kernel [2-7].

Suppose that ℕ = {1,2,…}, ℕ0 = {0,1,2,…}, ℝ+ = [0,∞) and

𝑆 is a discrete (finite or countable) state space. Let be a discrete

random variable taking values on and let be a continuous random

variable with values in the set ℝ+.

Definition 1. A two-dimensional sequence of random variables

{(𝜉𝑛,𝜗𝑛): 𝑛 ∈ ℕ0} is said to be a Markov Renewal Process (MRP) if:

1) for all 𝑛 ∈ ℕ0, 𝑗 ∈ 𝑆, 𝑡 ∈ ℝ + 𝑃(𝜉𝑛+1 = 𝑗,𝜗𝑛+1 ≤ 𝑡 | 𝜉𝑛 =

𝑖,𝜗𝑛,…𝜉0,𝜗0) = 𝑃(𝜉𝑛+1 = 𝑗,𝜗𝑛+1 ≤ 𝑡 | 𝜉𝑛 = 𝑖) (1) with probability 1; 2)

for all 𝑖,𝑗 ∈ 𝑆, 𝑃(𝜉0 = 𝑖,𝜗0 = 0) = 𝑃(𝜉0 = 𝑖). (2) From the definition 1

it follows, that MRP is a homogeneous two-dimensional Markov chain

such that its transition probabilities depend only on the discrete

component (they do not depend on the second component). A matrix

𝑄(𝑡) = [𝑄𝑖𝑗(𝑡): 𝑖,𝑗 ∈ 𝑆]; (3) 𝑄𝑖𝑗(𝑡) = 𝑃(𝜉𝑛+1 = 𝑗,𝜗𝑛+1 ≤ 𝑡 | 𝜉𝑛 = 𝑖)
is called a renewal matrix. A vector 𝑝 = [𝑝𝑖: 𝑖 ∈ 𝑆], where 𝑝𝑖 =

𝑃{𝜉0 = 𝑖} defines an initial distribution of the Markov renewal

process. It follows from the definition 1 that the Markov renewal matrix

satisfies the following conditions:

1. The functions (𝑡), 𝑡 ≥ 0, (𝑖,) ∈ 𝑆 × 𝑆 are not decreasing and

right-hand continuous.

2. For each pair (𝑖,𝑗) ∈ 𝑆 × 𝑆, 𝑄𝑖𝑗(0) = 0 and 𝑄𝑖𝑗(𝑡) ≤ 1 for 𝑡

∈ ℝ+. 3. For each 𝑖 ∈ 𝑆, lim 𝑡→∞ ∑𝑗∈𝑆 (𝑡) = 1. One can prove that

a function matrix (𝑡) = [(𝑡): 𝑖,𝑗 ∈ 𝑆] satisfying the above mentioned

conditions and a vector 𝑝0 = [𝑝𝑖 (0): 𝑖 ∈ 𝑆] such that ∑𝑖∈𝑆 𝑝𝑖 (0) =

1 define some Markov renewal process. From definition of the renewal

matrix it follows that = [: 𝑖,𝑗 ∈ 𝑆], 𝑝𝑖𝑗 = lim 𝑡→∞ 𝑄𝑖𝑗(𝑡) (4) is a

18. Markov’s Modelling of IoT Systems

100

stochastic matrix. It means that for each pair (𝑖,) ∈ 𝑆 × 𝑆 𝑝𝑖𝑗 ≥ 0 and

for each 𝑖 ∈ 𝑆, ∑𝑗∈𝑆 𝑝𝑖𝑗 = 1.

It is easy to notice that for each 𝑖 ∈ 𝑆

(𝑡) = ∑𝑗∈𝑆 𝑄𝑖𝑗 (𝑡) (18.6)

is a probability cumulative distribution function (CDF) on ℝ+.

The definition 1 leads to the interesting and important conclusions (𝜗0

= 0) = 1. For a Markov Renewal Process with an initial distribution 𝑝0

and a renewal kernel (𝑡), 𝑡 ≥ 0 a following equality is satisfied

𝑃(𝜉0 = 𝑖0,𝜉1 = 𝑖1,𝜗1 ≤ 𝑡1,…,𝜉𝑛 = 𝑖𝑛,𝜗𝑛 ≤ 𝑡𝑛) =

𝑝𝑖0𝑄𝑖0𝑖1(𝑡1)𝑄𝑖1𝑖2(𝑡2)…𝑄𝑖𝑛−1𝑖𝑛(𝑡𝑛). (18.7)

For 𝑡1 → ∞,…, → ∞, we obtain

(𝜉0 = 𝑖0,1 = 𝑖1,…,𝜉𝑛 = 𝑖𝑛) = 𝑝𝑖0𝑝𝑖0𝑖1𝑝𝑖1𝑖2 …𝑝𝑖𝑛−1𝑖𝑛. (18.8)

It means that a sequence {𝜉𝑛: 𝑛 ∈ ℕ0} is a homogeneous

Markov chain with the discrete state space 𝑆, defined by the initial

distribution 𝑝 = [𝑝𝑖0: 𝑖0 ∈ 𝑆] and the transition matrix

𝑃 = [Pij : 𝑖,𝑗 ∈ 𝑆], where 𝑝𝑖𝑗 = lim 𝑡→∞ 𝑄𝑖𝑗(𝑡). (18.9)

The random variables 𝜗1,…, are conditionally independent if a

trajectory of the Markov chain {𝜉𝑛: 𝑛 ∈ ℕ0} is given. It means that

(𝜗1 ≤ 𝑡1,2 ≤ 𝑡2 …,𝜗𝑛 ≤ 𝑡𝑛 | 𝜉0 = 𝑖0,𝜉1 = 𝑖1,…,𝜉𝑛 = 𝑖𝑛) =

= ∏ 𝑃(𝜗𝑘 ≤ 𝑡𝑘 | 𝜉𝑘 = 𝑖𝑘, 𝜉𝑘 − 1 = 𝑖𝑘 − 1).𝑛
𝑘=1 (18.10)

The Markov renewal matrix (𝑡) = [(𝑡): 𝑖,𝑗 ∈ 𝑆] is called

continuous if each row of the matrix contains at least one element

having continuous component in the Lebesgue decomposition of the

probability distribution. The matrix (𝑡) = [(𝑡):𝑖, ∈ 𝑆] with elements

(𝑡) = 𝑝𝑖𝑗𝐺𝑖(𝑡), 𝑖 ∈ 𝑆, where

P(𝑡) = 𝑐 [1,∞)(𝑡) + (1 − 𝑐)∫ ℎ𝑖
𝑡

0
(𝑢)𝑑𝑢, 𝑐 ∈ (0,1), 𝑝𝑖𝑗 ≥ 0,

 18. Markov’s Modelling of IoT Systems

101

∑𝑗∈𝑆 𝑝𝑖𝑗 = 1

and ℎ𝑖(⋅) is a continuous probability density function, is an

example of the continuous Markov renewal matrix.

The Markov renewal matrix 𝑄(𝑡) = [𝑄𝑖𝑗(𝑡):𝑖,𝑗 ∈ 𝑆] with

elements 𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝐼[1,∞)(𝑡), 𝑖 ∈ 𝑆, where 𝑝𝑖𝑗 ≥ 0, ∑𝑗∈𝑆 𝑝𝑖𝑗 = 1

is not continuous Markov renewal matrix. Moreover, in the whole

paper we will assume that the Markov renewal matrix (𝑡) = [(𝑡): 𝑖,𝑗 ∈

𝑆] is continuous. Let 0 = 𝜗0, 𝜏𝑛 = 𝜗1 + 𝜗2 + ⋯+ 𝜗𝑛, 𝑛 ∈ ℕ0,

(10) 𝜏∞ = lim 𝑛→∞ 𝜏𝑛 = sup{𝜏𝑛: 𝑛 ∈ ℕ0}. The sequence {(𝜉𝑛,𝜏𝑛):𝑛

∈ ℕ0} is two-dimensional Markov chain with transition probabilities

𝑃(𝜉𝑛+1 = 𝑗,𝜏𝑛+1 ≤ 𝑡 | 𝜉𝑛 = 𝑖,𝜏𝑛 = ℎ) = 𝑄𝑖𝑗(𝑡 − ℎ), 𝑖,𝑗 ∈ 𝑆 (11) and

it is also called Markov Renewal Process (MRP) Koroluk.

Hidden Markov Models (HMMs) basically represent Bayesian

networks triggered to collect contextual information based on scanty

approach data in order to recognize possible threats or conducts that

may turn abusive. HMMs in other words can be described as a doubly

stochastic embedded network for identifying threats based on visual

appearances and verbal conversations (Fig. 18.1).

Predictive models that are able to estimate the current condition

and the Remaining Useful Lifetime of an industrial equipment are of

high interest, especially for manufacturing companies, which can

optimize their maintenance strategies.

If we consider that the costs derived from maintenance are one of

the largest parts of the operational costs and that often the maintenance

and operations departments comprise about 30% of the manpower, it is

not difficult to estimate the economic advantages that such innovative

techniques can bring to industry. Moreover, predictive maintenance,

where in real time the Remaining Useful Lifetime (RUL) of the

machine is calculated, has been proven to significantly outperforms

other maintenance strategies, such as corrective maintenance. In this

work, RUL is defined as the time, from the current moment, that the

systems will fail. Failure, in this context, is defined as a deviation of the

delivered output of a machine from the specified service requirements

that necessitate maintenance [3-7].

18. Markov’s Modelling of IoT Systems

102

Fig. 18.14 – Hidden Semi-Markov model

Models like Support Vector Machines, Dynamic Bayesian

Networks, clustering techniques, and data mining approaches have been

successfully applied to condition monitoring, RUL estimation, and

predictive maintenance problems. State space models, like Hidden

Markov Models (HMMs), are particularly suitable to be used in

industrial applications, due to their ability to model the latent state

which represents the health condition of the machine.

Classical HMMs have been applied to condition assessment;

however, their usage in predictive maintenance has not been effective

due to their intrinsic modeling of the state duration as a geometric

distribution.

To overcome this drawback, a modified version of HMM, which

takes into account an estimate of the duration in each state, has been

proposed in the works of Tobon-Mejia et al. Thanks to the explicit state

sojourn time modeling, it has been shown that it is possible to

effectively estimate the RUL for industrial equipment. However, the

drawback of their proposed HMM model is that the state duration is

 18. Markov’s Modelling of IoT Systems

103

always assumed as Gaussian distributed and the duration parameters are

estimated empirically from the Viterbi path of the HMM.

A complete specification of a duration model together with a set

of learning and inference algorithms has been given firstly by Ferguson.

In his work, Ferguson allowed the underlying stochastic process of the

state to be a semi-Markov chain, instead of a simple Markov chain of a

HMM. Such model is referred to as Hidden Semi-Markov Model

(HSMM). HSMMs and explicit duration models have been proven

beneficial for many applications. A complete overview of different

duration model classes has been made by Yu [3]. Most state duration

models, used in the literature, are nonparametric discrete distributions

[4-7]. As a consequence, the number of parameters that describe the

model and that have to be estimated is high, and consequently the

learning procedure can be computationally expensive for real complex

applications. Moreover, it is necessary to specify a priori the maximum

duration allowed in each state.

To alleviate the high dimensionality of the parameter space,

parametric duration models have been proposed. For example, Salfner

proposed a generic parametric continuous distribution to model the

state sojourn time. However, in their model, the observation has been

assumed to be discrete and applied to recognize failure-prone

observation sequence. Using continuous observation, Azimi et al.

specified an HSMM with parametric duration distribution belonging to

the Gamma family and modeled the observation process by a Gaussian.

Inspired by the latter two approaches, in this work we propose a

generic specification of a parametric HSMM, in which no constraints

are made on the model of the state duration and on the observation

processes. In our approach, the state duration is modeled as a generic

parametric density function. On the other hand, the observations can be

modeled either as a discrete stochastic process or as continuous mixture

of Gaussians. The latter has been shown to approximate, arbitrarily

closely, any finite, continuous density function. The proposed model

can be generally used in a wide range of applications and types of data.

Moreover, in this paper we introduce a new and more effective

estimator of the time spent by the system in a determinate state prior to

the current time. To the best of our knowledge, a part from the above

referred works, the literature on HSMMs applied to prognosis and

predictive maintenance for industrial machines is limited. Hence, the

https://www.hindawi.com/journals/mpe/2015/278120/#B26

18. Markov’s Modelling of IoT Systems

104

present work aims to show the effectiveness of the proposed duration

model in solving condition monitoring and RUL estimation problems.

Dealing with state space models, and in particular of HSMMs,

one should define the number of states and correct family of duration

density, and in case of continuous observations, the adequate number of

Gaussian mixtures. Such parameters play a prominent role, since the

right model configuration is essential to enable an accurate modeling of

the dynamic pattern and the covariance structure of the observed time

series. The estimation of a satisfactory model configuration is referred

to as model selection in literature.

While several state-of-the-art approaches use expert knowledge

to get insight on the model structure an automated methodology for

model selection is often required. In the literature, model selection has

been deeply studied for a wide range of models [2-7]. Among the

existing methodologies, information based techniques have been

extensively analyzed in literature with satisfactory results. Although

Bayesian Information Criterion (BIC) is particularly appropriate to be

used in finite mixture models, Akaike Information Criterion (AIC) has

been demonstrated to outperform BIC when applied to more complex

models and when the sample size is limited, which is the case of the

target application of this paper.

In this work AIC is used to estimate the correct model

configuration, with the final goal of an automated HSMMs model

selection, which exploits only the information available in the input

data. While model selection techniques have been extensively used in

the framework of Hidden Markov Models, to the best of our

knowledge, the present work is the first that proposes their appliance to

duration models and in particular to HSMMs [4-7].

In summary, the present work contributes to condition

monitoring, predictive maintenance, and RUL estimation problems by

(i) proposing a general Hidden Semi-Markov Model applicable for

continuous or discrete observations and with no constraints on the

density function used to model the state duration; (ii) proposing a more

effective estimator of the state duration variable , that is, the time spent

by the system in the next state, prior to current time; (iii) adapting the

learning, inference and prediction algorithms considering the defined

HSMM parameters and the proposed estimator; (iv) using the Akaike

Information Criterion for automatic model selection.

 18. Markov’s Modelling of IoT Systems

105

Hidden Semi-Markov Models (HSMMs) introduce the concept

of variable duration, which results in a more accurate modeling power

if the system being modeled shows a dependence on time.

In this section we give the specification of the proposed HSMM,

for which we model the state duration with a parametric state-

dependent distribution. Compared to nonparametric modeling, this

approach has two main advantages: (i) the model is specified by a

limited number of parameters; as a consequence, the learning procedure

is computationally less expensive;(ii)the model does not require the a

priori knowledge of the maximum sojourn time allowed in each state,

being inherently learnt through the duration distribution parameters.

A Hidden Semi-Markov Model is a doubly embedded stochastic

model with an underlying stochastic process that is not observable

(hidden) but can only be observed through another set of stochastic

processes that produce the sequence of observations. HSMM allows the

underlying process to be a semi-Markov chain with a variable duration

or sojourn time for each state. The key concept of HSMMs is that the

semi-Markov property holds for this model: while in HMMs the

Markov property implies that the value of the hidden state at

time depends exclusively on its value of time, in HSMMs the

probability of transition from state to state at time depends on the

duration spent in state prior to time.

18.5 Work related analysis

Nowadays there are many projects, which describes and

researches IoT systems.

Smart Vehicle features shown by the Volvo Car Group company,

working on new car projects - exchange of information about the

dangers on the road through the "cloud" and control of the driver's state

[17].

Toyota Motor Corp. and Panasonic jointly develop a service that

will connect cars and home appliances through the IoT [18].

The project PRORETA [19] is a research in the area of the

cooperative HMIs. The research object is the prototype of the

cooperative automobile HMI that implements the scenarios of

preventing collisions at the cross-roads.

18. Markov’s Modelling of IoT Systems

106

The PRORETA HMI system implements a huge number of use

scenarios, it does not complicate or irritate and ensures the multimode

support.

The HMI provides 4 support levels – information messages,

warnings, actions recommendations, automatic intervention.

A lot of EU universities including ALIOT project partners

conduct research and implement education MSc and PhD programs in

the Internet of Things application for transport and other domains.

Development of cooperative HMI for cloud and IoT systems based on

analysis of these programs and providing some of the educational

topics and research directions.

In particular, the following courses and programs have been

considered:

- Coimbra University, Portugal: IoT course for MSc [20]. The

courses represents a new stage in the digital evolution and focuses on

the Internet of Things for smart transport and cities, and the

development of tools to transform city infrastructure;

- KTH University, Sweden: three MSc programs including:

a) IoT related topics in Information and Network Engineering

[21],

b) Communication Systems [22],

c) Embedded Systems [23];

- Newcastle University, United Kingdom: MSc Program on

Embedded Systems and Internet of Things (ES-IoT) MSc [24].

Conclusions and questions

The section presents an analysis of Markov and semi-Markov

models of the Internet of things systems functioning, conducted their

study from the point of view of reliability and cyber security.

The research of Markov models showed that the IoT system,

even with the required high AC value, is highly dependent on the

correct failure-free operation of the firewalls. Analysis of the graphical

dependencies obtained for the developed models, taking into account

the rearrangement in case of appearance and installation of the patch on

the vulnerability of the firewall software, showed that AC SBC is most

sensitive to patching the firewall software of the router and the network

firewall. When the patch is set, the AC remains high (0.9999925), even

with a transition rate to a failure state of 0.001 1/h. The hypothesis is

 18. Markov’s Modelling of IoT Systems

107

confirmed that the establishment of the patch significantly increases the

AC value even at clearly high values of the transition rates to the failure

state. The practical importance of the results allows to assess the SBC

availability and to develop recommendations to reduce the vulnerability

of its software from the impact of DDoS attacks, as well as reduce its

power consumption.

Questions:

1. Define the requirements to the Markov process.

2. Explain the difference between Homogeneous and Non-

Homogeneous Markov model.

3. Give the definition of semi-Markov process.

4. Give the classification of Markov models.

5. What are the basic availability metrics of the Internet of

things?

6. Explain what is the difference between the functional graph of

the Markov model and the state model of the Internet of things system?

7. Explain, please, the principle of constructing state graphs of

Markov models.

8. Explain, please, principles of Markov’s modeling.

9. Explain, please, principles of Semi Markov’s modeling.

References

1. Margaret Rouse. Markov model. [https://whatis.techtarget.com/

definition/Markov-model].

2. Charles M. Grinstead, J.Lauri Snell. Probability. The CHANCE

Project1. Version dated 4 July 2006. Markov Chains. 518 p.

[https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability

_book/Chapter11.pdf].

3. Grabski F. Semi-Markov models of reliability and operation, IBS

PAN, Warsaw, 2002 [in Polish].

4. Grabski F. Semi-Markov Processes: Applications in Systems

Reliability and Maintenance, Elsevier, Amsterdam, Boston, Heidelberg,

London, New York, Oxford, Paris, San Diego, San Francisco, Sydney, 2014.

5. Franciszek Grabski. Semi-markov reliability model of the cold

standby system. Zeszyty Naukowe AMW — Scientific Journal of PNA.

International Symposium on Stochastic Models in Reliability Engineering,

Life Sciences and Operations Management (SMRLO'10).

https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf

18. Markov’s Modelling of IoT Systems

108

6. Limnios N., Oprisan G., Semi-Markov Processes and Reliability,

Birkhauser, Boston 2001.

7. Grabski Franciszek. Semi-Markov reliability model of system

composed of main subsystem, cold backup component and switch. Summer

Safety and Reliability Seminars, Vol. 8, Number 1, 2017, pp. 47-53.

8. Internet of Things. IoT Governance, Privacy and Security Issues.

European Research Cluster on the Internet of Things. Ovidiu Vermesan, Peter

Friess, Coordinators of IERC Cluster. January, 2015. 128 p.

9. Delivering on the IoT customer experience. Business white paper.

Hewlett Packard Enterprise. Available at: [http://h20195.www2.hpe.com

/v2/GetDocument.aspx?docname =4AA6-5128ENW (accepted at 5.08.2016)].

8 p.

10. Internet of Things and its future. Available at:

[http://www.huawei.com/ilink/en/about-

huawei/newsroom/pressrelease/HW_080993?dInID=23407&relatedID=19881

& relatedName= HW_076569&dInDocName=HW_076557 (access date:

20.11.2017)].

11. IETF Standardization in the Field of the Internet of Things (IoT): A

Survey. Isam Ishaq, David Carels, Girum K. Teklemariam, Jeroen Hoebeke,

Floris Van den Abeele, Eli De Poorter, Ingrid Moerman and Piet Demeester. J.

Sens. Actuator Netw. 2013, 2, 235-287; doi:10.3390/jsan2020235. Journal of

Sensor and Actuator Networks ISSN 2224-2708. Available at:

[http://www.mdpi.com/journal/jsan/].

12. ISO/IEC 27000 family – Information security management systems.

[https://www.iso.org/isoiec-27001-informationsecurity.html].

13. Internet Architecture Board (IAB). RFC 7452 “Architectural

Considerations in Smart Object Networking”.

[https://www.rfceditor.org/pdfrfc/rfc7452.txt.pdf].

14. Kharchenko Vyacheslav, Kolisnyk Maryna, Piskachova Iryna.

Reliability and Security Issues for IoT-Based Smart Business Center:

Architecture and Markov Model. IEEE; Computer of science, MCSI 2016,

Greece, Chania, 2016. Paper ID: 4564699.

15. Gerrod Andresen, Zachary Williams. Metrics, key performance

indicators, and modeling of long range aircraft availability and readiness.

NATO, RTO-MP-AVT-144. 12 p.

16. Maryna Kolisnyk, Iryna Piskachova, Vyacheslav Kharchenko.

Patching the Firewall Software to Improve the Availability and Security:

Markov Models for Internet of Things Based Smart Business Center. CEUR-

WS, Workshop Thermit 2018, 13 p.

17. Lynn Walford, Volvo New Connected Car Features-Magnets, Real-

Time Cloud Road Data & Driver Sensing [http://www.autoconnected car. com

http://www.mdpi.com/journal/jsan/

 18. Markov’s Modelling of IoT Systems

109

/2014/03/volvo-new-connected-car-features-magnets-real-time-cloud-road-

data-driver-sensing/], 2014.

18. Тоyota and Panasonic develop cloud service to connect cars and

household appliances [http://panasonic.ru/press_center/news/detail/ 464204],

2014.

19. Bauer, E. PRORETA 3: An Integrated Approach to Collision

Avoidance and Vehicle Automation / E. Bauer, F. Lotz, M. Pfromm // At -

Automatisierungstechnik. – 2012. – № 12. – P. 755-765.

20. Internet Of Things Course - Immersive Program Master in City and

Technology [https://apps.uc.pt/search?q=Internet+of+Things].

21. Master's program in Information and Network Engineering

[https://www.kth.se/en/studies/master/information-and-network-

engineering/master-s-programme-in-information-and-network-engineering-

1.673817]

22. Master's program in Communication Systems [https://www.kth.se

/en/studies/ master/communication- systems/ description - 1.25691]

23. Master's program in Embedded Systems

[https://www.kth.se/en/studies/master/ embedded-systems /description-

1.70455/].

24. Related Programs to Embedded Systems and Internet of Things (ES-

IoT) MSc [https://www.ncl.ac.uk/postgraduate/courses /degrees/embedded-

systems-internet-of-things-msc/relateddegrees.html].

http://panasonic.ru/press_center/news/detail/%20464204
https://www.google.com/aclk?sa=l&ai=DChcSEwilmM2Gi6rjAhWNyrIKHbSYCNMYABAAGgJscg&sig=AOD64_27dh93cxSXkir78gqu1WZHI9Di6Q&adurl=&q=&nb=0&res_url=https%3A%2F%2Fapps.uc.pt%2Fsearch%3Fq%3DInternet%2Bof%2BThings&rurl=https%3A%2F%2Fwww.uc.pt%2Fen&nm=101&bg=!f3ylfGREDaBlpklBXogCAAAAJlIAAAAJmQE8oAB9aGtm8bAMUAKQAS_stWTgpRmippO7CchBIE_NC_WIAV8Mp9bNaW0CvBhhxLis_fVh_pqTRLaPXkD-1j9lDQ8dY1JjhdF1lmNzgppvcSTOH6xqq0GoZxGTF5ttyAu0hrg-T2KnwU4LjGIhVGoJh-pjhqV_U9eUIE_R8acyA_2tUR3yEpaBwiquioFJpry2OcGX8lDgcNVOCQzKMAO1v1DzaWsBuF5aRYxxd68DhkxuYI8Vj6yQuHvOxbooXGrdrCPjnrqCAsNysqnq2g-u5sStdbQ1hFKRQmlkvw-NmFWobDBrV_3-NSv-YKUOVLlL_x73PUMRVYau8THhhtG3bXyWoeWUZ_dJrPIFQSgOKUy8iCVeeJK9fn0WjD89prwJIMq1lVVyMBrnfVLIyl_xc0uh2El3uKEoMhqJhQ
https://www.google.com/aclk?sa=l&ai=DChcSEwilmM2Gi6rjAhWNyrIKHbSYCNMYABAAGgJscg&sig=AOD64_27dh93cxSXkir78gqu1WZHI9Di6Q&adurl=&q=&nb=0&res_url=https%3A%2F%2Fapps.uc.pt%2Fsearch%3Fq%3DInternet%2Bof%2BThings&rurl=https%3A%2F%2Fwww.uc.pt%2Fen&nm=101&bg=!f3ylfGREDaBlpklBXogCAAAAJlIAAAAJmQE8oAB9aGtm8bAMUAKQAS_stWTgpRmippO7CchBIE_NC_WIAV8Mp9bNaW0CvBhhxLis_fVh_pqTRLaPXkD-1j9lDQ8dY1JjhdF1lmNzgppvcSTOH6xqq0GoZxGTF5ttyAu0hrg-T2KnwU4LjGIhVGoJh-pjhqV_U9eUIE_R8acyA_2tUR3yEpaBwiquioFJpry2OcGX8lDgcNVOCQzKMAO1v1DzaWsBuF5aRYxxd68DhkxuYI8Vj6yQuHvOxbooXGrdrCPjnrqCAsNysqnq2g-u5sStdbQ1hFKRQmlkvw-NmFWobDBrV_3-NSv-YKUOVLlL_x73PUMRVYau8THhhtG3bXyWoeWUZ_dJrPIFQSgOKUy8iCVeeJK9fn0WjD89prwJIMq1lVVyMBrnfVLIyl_xc0uh2El3uKEoMhqJhQ
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817
https://www.ncl.ac.uk/postgraduate/courses%20/degrees/embedded-systems-internet-of-things-msc/relateddegrees.html
https://www.ncl.ac.uk/postgraduate/courses%20/degrees/embedded-systems-internet-of-things-msc/relateddegrees.html

19. Interaction Simulation For IoT Systems

110

19. INTERACTION SIMULATION FOR IOT SYSTEMS

DrS. Prof. G.V. Tabunshchyk (ZNTU)

Сontents

Abbreviations .. 111

19.1 Interaction in IoT systems ... 112

19.1.1 Introduction into infrastructure in the IoT systems 113

19.1.2 Patterns for designing interactions for IoT 116

19.2 Interaction Flow Modelling Language 118

19.3. Case Study .. 119

19.3.1 Usage of the Remote Laboratory GOLDi for interaction

modelling ... 119

19.3.2 Simulation of the interaction for Smart Campus. 123

19.3.3 Interaction Simulation for e-Health systems. 124

19.3.4 Interaction Simulation for the Remote Laboratories 127

19.3.5 Interaction Simulation for Intelligent transport. 128

19.4 Work related analysis .. 131

Conclusions and questions... 131

References ... 132

19. Interaction Simulation For IoT Systems

111

Abbreviations

BLE – Bluetooth Low Energy

BPMN - Business Process Model and Notation

GOLDi – Grid of Online Lab Devices

IoTIM – IoT Integration Middleware

IFML – Flow Modeling Language

ISRT - Interactive platform for Embedded

Software Development

RFID - Radio-frequency identification

SoaML - Service-oriented architecture Modeling Language

SysML - Systems Modeling Language

UI – User Interface

UML - Unified Modeling Language

19. Interaction Simulation For IoT Systems

112

The “Internet of Things” (IoT) refers to the growing range of

everyday objects acquiring connectivity, sensing abilities, and increased

computing power. In consumer terms, some common categories

currently include [1,2]:

‒ connected home technology (such as thermostats, lighting, and

energy monitoring);

‒ wearables medical/wellness devices (such as “smart” watches

and blood pressure monitors);

‒ artificial intelligent implants;

‒ connected cars (which may provide access to onboard services,

environment, car maintenance and connection to smart grid);

‒ urban systems (such as air quality sensors, city rental bikes, and

parking meters/sensors).

Designing these systems raises challenges with the maturity of

the technology you are working, complex use of user expectations of

the system and the complexity of the services, provided by the system.

Implementation of the IoT technologies gave great impact on the

types and ways of interactions. On the one side it influences greatly on

the way how users interact with everything, on the other sides its

changes the way of interactions inside on IoT systems. This chapter

will be devoted to the simulation of the interactions between users and

IoT systems.

19.1 Interaction in IoT systems

Approaches for designing of the IoT systems should unite data,

interactions and the physical world. Interaction coupled with data

transcends the laptop and mobile device, and it becomes literally

embedded into any object, infrastructure or interaction.

For example in-store interactions simultaneously generating data

might include entering the store; checking in on a mobile device;

connecting to Wi-Fi or passing by a beacon; scanning an RFID tag,

quick response code or other sensor indicating interest in an object or

promotion; interacting with an employee stylist equipped with a tablet

or other scanning device; trying on an item using a "smart mirror," in

which one could search for various sizes, prints, colors or accessories;

or even digitally overlay products on themselves using augmented

reality. [2].

https://internetofthingsagenda.techtarget.com/feature/An-inside-look-at-beacon-technology-manufacturers-and-use-cases
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Air-Canadas-cargo-IoT-initiative-takes-flight
https://searchcrm.techtarget.com/news/4500248994/Death-of-the-mall-could-spell-rise-of-mobile-retail-economy
https://whatis.techtarget.com/definition/augmented-reality-AR
https://whatis.techtarget.com/definition/augmented-reality-AR

 19. Interaction Simulation For IoT Systems

113

Purchases, redemption of coupons and digital receipts, among

other interactions, can now all be integrated with a shopper's online

profile, thereby connecting "brick" (in-store) and "click" (online)

interactions. Such interactions can also signal inventory and supply

chain transactions and even inform store layout, merchandizing, labor

allocation and a host of other operational decisions, many of which are

entirely invisible to the customer [Error! Reference source not

ound.].

19.1.1 Introduction into infrastructure in the IoT systems

In essence, IoT architecture is the system of numerous elements:

sensors, protocols, actuators, cloud services, and layers.

In the simplest way the IoT architecture contains only three

layers [3] :

1. The client side (IoT Device Layer)

2. Operators on the server side (IoT Getaway Layer)

3. A pathway for connecting clients and operators (IoT Platform

Layer)

But the number if to include all elements which are included by

IoT architecture [Error! Reference source not found.] the structure

ill be much more difficult.

Let’s consider the basic elements of IoT systems [6,7], which are

main construction blocks of the IoT platforms.

Things. A “thing” is an object equipped with sensors that gather

data which will be transferred over a network and actuators that allow

things to act (for example, to switch on or off the light, to open or close

a door, to increase or decrease engine rotation speed and more). This

concept includes fridges, street lamps, buildings, vehicles, production

machinery, rehabilitation equipment and everything else imaginable.

Sensors are not in all cases physically attached to the things: sensors

may need to monitor, for example, what happens in the closest

environment to a thing.

Gateways. Data goes from things to the cloud and vice versa

through the gateways. A gateway provides connectivity between things

and the cloud part of the IoT solution, enables data preprocessing and

filtering before moving it to the cloud (to reduce the volume of data for

detailed processing and storing) and transmits control commands going

19. Interaction Simulation For IoT Systems

114

from the cloud to things. Things then execute commands using their

actuators.

Cloud gateway facilitates data compression and secure data

transmission between field gateways and cloud IoT servers. It also

ensures compatibility with various protocols and communicates with

field gateways using different protocols depending on what protocol is

supported by gateways.

Streaming data processor ensures effective transition of input

data to a data lake and control applications. No data can be occasionally

lost or corrupted.

Data lake. A data lake is used for storing the data generated by

connected devices in its natural format. Big data comes in "batches" or

in “streams”. When the data is needed for meaningful insights it’s

extracted from a data lake and loaded to a big data warehouse.

Big data warehouse. Filtered and preprocessed data needed for

meaningful insights is extracted from a data lake to a big data

warehouse. A big data warehouse contains only cleaned, structured and

matched data (compared to a data lake which contains all sorts of data

generated by sensors). Also, data warehouse stores context information

about things and sensors (for example, where sensors are installed) and

the commands control applications send to things.

Data analytics. Data analysts can use data from the big data

warehouse to find trends and gain actionable insights. When analyzed

(and in many cases – visualized in schemes, diagrams, infographics)

big data show, for example, the performance of devices, help identify

inefficiencies and work out the ways to improve an IoT system (make it

more reliable, more customer-oriented). Also, the correlations and

patterns found manually can further contribute to creating algorithms

for control applications.

Machine learning and the models ML generates. With machine

learning, there is an opportunity to create more precise and more

efficient models for control applications. Models are regularly updated

(for example, once in a week or once in a month) based on the

historical data accumulated in a big data warehouse. When the

applicability and efficiency of new models are tested and approved by

data analysts, new models are used by control applications.

Control applications send automatic commands and alerts to

actuators, for example:

 19. Interaction Simulation For IoT Systems

115

Windows of a smart home can receive an automatic command to

open or close depending on the forecasts taken from the weather

service.

When sensors show that the soil is dry, watering systems get an

automatic command to water plants.

Sensors help monitor the state of industrial equipment, and in

case of a pre-failure situation, an IoT system generates and sends

automatic notifications to field engineers.

The commands sent by control apps to actuators can be also

additionally stored in a big data warehouse. This may help investigate

problematic cases (for example, a control app sends commands, but

they are not performed by actuators – then connectivity, gateways and

actuators need to be checked). On the other side, storing commands

from control apps may contribute to security, as an IoT system can

identify that some commands are too strange or come in too big

amounts which may evidence security breaches (as well as other

problems which need investigation and corrective measures).

Control applications can be either rule-based or machine-learning

based. In the first case, control apps work according to the rules stated

by specialists. In the second case, control apps are using models which

are regularly updated (once in a week, once in a month depending on

the specifics of an IoT system) with the historical data stored in a big

data warehouse.

Although control apps ensure better automation of an IoT

system, there should be always an option for users to influence the

behavior of such applications (for example, in cases of emergency or

when it turns out that an IoT system is badly tuned to perform certain

actions).

The IoT Integration Middleware (IoTIM) serves as an integration

layer for different kinds of Sensors, Actuators, Devices, and

Applications. It is responsible for receiving data from the connected

Devices, processing the received data, providing the received data to

connected Applications, and controlling Devices. An example for

processing is to evaluate condition-action rules and sending commands

to Actuators based on this evaluation.

User applications are a software component of an IoT system

which enables the connection of users to an IoT system and gives the

options to monitor and control their smart things (while they are

19. Interaction Simulation For IoT Systems

116

connected to a network of similar things, for example, homes or cars

and controlled by a central system). With a mobile or web app, users

can monitor the state of their things, send commands to control

applications, set the options of automatic behavior (automatic

notifications and actions when certain data comes from sensors).

In [4] there is done detailed analysis of the existing as open

source as proprietary platforms such as are FIWARE, OpenMTC,

SiteWhere, Webinos, AWS IoT2, IBM’s Watson IoT Platform10,

Microsoft’s Azure IoT Hub11, and Samsung’s SmartThings5.

And these research shows the great variety of existing solutions

that’s why the main criteria in the selection of the platform should be

the user requirements to the interactions within the final systems.

19.1.2 Patterns for designing interactions for IoT

Design Patterns provide well known ways to solve design

problems commonly encountered in a particular discipline or problem

domain.

Interaction design is closely aligned to user interface (UI) design

in the sense that the two are usually done in tandem and often by the

same people. But interaction design is primarily concerned with

behaviors and actions, whereas UI/visual design is concerned with

layout and aesthetics. (Just to confuse matters, some people use UI

design as a shorthand term to include both interaction design and visual

design.) Typical outputs for interaction design might include user

flows, low-medium fidelity interactive prototypes, and for a visual UI,

screen wireframes.

Fig. 19.1 – Example of inter-usability[2]

 19. Interaction Simulation For IoT Systems

117

IoT devices come in a wide variety of form factors with varying

input and output capabilities. That’s why it’s important to consider not

just the usability of individual UIs but interusability: distributed user

experience across multiple devices [Error! Reference source not

ound.].

Design patterns for Application Programming describe ways that

software and interfaces are created, managed, deployed, and used in

IoT applications [Error! Reference source not found.]:

1. REST Objects: Mapping of REST API resources onto program

objects in the application language, using libraries.

2. Event handler, onEvent: Application code that responds to

asynchronous eventis.

3. Event driven flow: A set of application handlers that operate in

an event driven graph containing series cascade and parallel constructs.

4. State Machine: A logic construct where a next state depends

on a set of inputs and the current state, evaluated by a set of logic rules

associated with each state.

5. State Externalization: The ability to create stateless application

software by mapping application state onto external resources.

6. Rule oriented programming: Using a set of rules or rule

language to program state machine logic.

7. Abstraction of applications: Stateless application software uses

application templates for reusability.

8. Application templates: Abstract application components with

well defined interfaces.

9. Modular applications: Applications consisting of one or more

reusable components.

Applications run anywhere, location independent applications:

Application components can run anywhere, in devices, on local

network servers, in gateways, in edge servers, in cloud, on user devices.

Discovery and Linking: Integrates resources into applications by

resolving resource links, sets attributes in application objects

Object Constructor: Creates application software objects from

metadata models.

19. Interaction Simulation For IoT Systems

118

From the point of view of users we can define interactions

[Error! Reference source not found.]:

‒ configuration of the access and permissions;

‒ interaction with devices;

‒ managing devices;

‒ managing wait for signal;

‒ managing notifications;

‒ searching devices;

‒ storing information;

‒ retrieving stored information;

‒ getting information from devices;

‒ information visualization;

‒ sharing information.

So from above the user interface design patterns for the IoT

systems can be grouped into three categories: Set Patterns, Get Patterns,

and Event-based Patterns.

In [6] for the smart spaces application there are suggested such

patterns as: greeting pattern, farewell pattern, action reaction pattern,

conversation pattern and exploration pattern.

For the development of user-machine interactions there are

obviously exists such challenges – complexity and manual design. Flow

Modeling Language (IFML) is one of the solutions for the designing

font-end of the IoT applications.

19.2 Interaction Flow Modelling Language

The standard Interaction Flow Modeling Language (IFML) is

designed for expressing the content, user interaction and control

behavior of the front-end of software applications [6]. Its metamodel

uses the basic data types from the UML metamodel, specializes a

number of UML metaclasses as the basis for IFML metaclasses, and

presumes that the IFML Domain Model is represented in UML.

FML is used for expressing (fig.19.2):

- content visualized in the user interfaces

- navigation paths

- user events and interaction

- binding to business logic

- binding to persistence layer.

 19. Interaction Simulation For IoT Systems

119

Fig. 19.2 – Example of IFML [10]

It is strongly integrated with such modelling languages as UML,

BPMN, SysML, SoaML.

There is also possible to use online open source tool for

developing and editing IFML[9].

It allows user to create and edit applications with the IFMF

language, edit database while the application is running, generate and

run and Web as Mobile prototypes.

19.3. Case Study

19.3.1 Usage of the Remote Laboratory GOLDi for interaction

modelling

Cyber-physical systems are the systems that provide the

integration of computing, physical processes and networks, or as

systems where software and physical subsystems are closely bounded,

each of which works in a variety of temporal and spatial dimensions,

demonstrating clear and multiple behavioral patterns, and interacts in a

variety of ways [11]. Modern trends in productivity and complexity of

requirements for systems use require fundamentally new design

approaches in which cybernetic and physical components are integrated

at different stages.

In general, the qualitative properties of cyber-physical systems

can be classified into the following two broad categories:

- reachability or guarantee properties that raise the question of

whether a system can achieve a configuration that satisfies a particular

property;

19. Interaction Simulation For IoT Systems

120

- security properties that raise the question of whether the system

can remain forever in configurations that satisfy a particular property.

The main properties of cyber-physical systems include following

[12]: high degree of automation, reorganization / reconfiguration of the

dynamics, cybernetic capabilities in each physical component, the

ability of networks to work on multiple scales, integration on different

time and spatial scales.

The behavior of cyber-physical systems is described in terms of

sequences of events distributed in time. So-called temporal logics are

often used for the specification of requirements for cyber-physical

systems. Temporal logics are formal languages that allow to define the

interrelationships of events in time: causal relationships, restrictions on

the relative order, the magnitude of delays between events, etc. The

following examples can be cited as temporal properties: the system

always works without freezing; two users cannot simultaneously access

shared data; a request with a higher weight will be processed before

constipation with a lower weight.

Integrated Communication Systems Group at the Ilmenau

University of Technology has many years of experience in integrated

hard- and software systems and over 10 years of experience in dealing

with Internet-supported teaching in the field of digital system design

[13]. Grid of Online Lab Devices Ilmenau (GOLDi) gives the students

the possibility to work on real physical systems without the need to

stand in line at a lab or the need to take care of opening hours and

offers the students a working environment that is as close as possible to

a real world laboratory. Under real laboratory conditions disturbances

can appear and lead to failures of the control algorithm that cannot be

detected under virtual lab conditions.

Online laboratories offer various features like visualization and

animation, which allows to observe and to test all the properties of the

design. In connection with formal design techniques, simulation and

prototyping are used to establish a foundation for the development of a

reliable system design. To check the functionality of the whole design,

some special simulation and validation features are included as integral

part of the GOLDI system. This offers various possibilities for the

execution of simulations [14], such as:

- usage of simulation models of the physical system for visual

prototyping,

 19. Interaction Simulation For IoT Systems

121

- step by step and parallel execution of these prototypes,

- visualization of the simulation process with the tools also used

for specification,

- features for test pattern generation and

- code generation for hardware and software synthesis.

GOLDI offers a Web-based environment supporting the above

mentioned features to generate and execute a design by using

simulation models.

As an example of modeling it was decided to create Kripke

structure of the elevator which is located in the GOLDi [15]. This

elevator has ability to move upwards and downwards from floor to

floor and open or close its door.

The atomic propositions for the Kripke structure representing the

elevator are as follows:

1st – elevator is located at the 1st floor;

2nd – elevator is located at the 2nd floor;

DO – door is open;

MU – elevator is moving in the upward direction;

MD – elevator is moving in the downward direction.

For clarity, each state is labeled with both the atomic

propositions that are true in the state and the negations of the

propositions that are false in the state. The labels on the arcs indicate

the actions that cause transitions and are not part of the Kripke

structure. Kripke structure of the elevator can be seen at Fig.19.3.

This model can be used for further formal verification. For

example one might want to determine that “door of the elevator is

closed and it is moving upwards”.

So, 𝑝 = ¬1𝑠𝑡⋀¬2𝑛𝑑⋀¬𝐷𝑂⋀𝑀𝑈⋀¬𝑀𝐷. Using Kripke

structure this can be determined.

19. Interaction Simulation For IoT Systems

122

Fig. 19.3 – Kripke structure of the elevator in GOLDi

 19. Interaction Simulation For IoT Systems

123

19.3.2 Simulation of the interaction for Smart Campus.

The idea of a Smart Campus for universities is that the campus

talks to you. Individual information for students, teachers and visitors is

delivered, depending on their profile and time of day [16-18].

Smart Campus Application consists from three main parts:

Mobile application for different operational systems iOS, Android;

CMS for updating advertisement information, administration system,

which consists from different components aimed to adjust hardware

characteristics.

Smart Campus Mobile Application provides users a variety of

functionality, allowing working both in on-line mode as in off-line

mode detecting buzz from the beacons.

The CMS is providing managing of maps development and

storage it in various ways:

- there is possibility to support diversity of media content

attributed to one beacon;

- the mobile application provides the search option to find the

optimal path to the selected beacon location;

- the mobile application provides an intellectual interface, which

allows selecting information based on user preferences.

After analyzing the applications, the main characteristics that

should have a voice navigator have been highlighted. The voice

navigator, for integration into the Smart-Campus must have the

following features:

- to record a voice sentence to get an audience that the user is

looking for;

- to recognize vocal sentences and convert them to text;

- to formulate a response to the user;

- to issue a voice message about the user's request;

- to determine the location of the user;

- to build a route from the current position of the user to the

required body;

- to display the schedule of occupations of the user;

- to add classes to the schedule;

- to enter the name of the class not only through the virtual

keyboard but also through speech recognition;

- to edit or delete selected classes from the schedule;

19. Interaction Simulation For IoT Systems

124

- to get the route to the chosen lesson;

- to display the schedule for the current day;

- to display the list of recent queries.

The interaction diagram for audio navigation is shown at

fig.19.4.

Fig. 19.4 – Interactions in the voice navigator

19.3.3 Interaction Simulation for e-Health systems

The usage of microcontrollers in biomedical applications is an

ongoing process and will only increase in the next few years, where the

added intelligence augments the possibilities for adaptive therapy and

increase knowledge in the healing process or where these systems

actually take over body functions. As technology advances

microcontrollers are becoming increasingly small and low-power, while

their computing power increases rapidly. There are well known

 19. Interaction Simulation For IoT Systems

125

implants such as cardiac pacemakers, implantable cardioverter

defibrillators, deep brain stimulation, epidural spinal cord stimulation,

cochlear implants and others.

The advances made in technology, such as advanced and smart

materials innovations, surgical techniques, robotic surgery and methods

of fixations and sterilization facilitated hip implants undergoing

multiple design revolutions to seek the least problematic implants and a

longer survivorship[2]. As a consequences, a large number of hip

endoprosthesis models are available, with different designs, different

materials from which they are made and the needed method of fixation.

Nevertheless, there are still problems that affect prostheses

functionality and longevity.

The average life of the endoprosthesis is 15-20 years, which is

caused with a number of physiological changes in bone tissue

associated with both age-related changes and with features of transfer

of load from the endoprosthesis to the bone.

Implantable medical electronics for hip endoprosthesis are a part

of cyber-physical system aimed for continuous monitoring of health

and implant state. Different physical parameters can be measured with

these systems. Medical staff could receive feedback on the stress and

strain in cables connected to the hipbone, torque in the endoprothesis,

the angle of the knee implant.

According to the common architecture of cyber-physical system

our Smart Hip Endoprothesis System consists of three components:

implant, contained medical electronics, external remote mobile control

system and external cognitive operator [21] .

19. Interaction Simulation For IoT Systems

126

Fig. 19.5 – Common system architecture

The intelligent implant should be able to measure the physical

parameters envisaged, possibly log them locally and communicate this

data wirelessly. It should also be able to operate autonomously for a

long period, have a battery on board for inductive powering. A very

important property of the endo-microcontroller system is its reliability

over decades as repair is not desirable and often not even possible.

The exo-system is there to receive the data and power the endo-

system. This data is delivered wirelessly. Possibly a battery pack can be

worn by the patient as a continuous power supply.

The last system is to visualize the data in an easy to understand

manner for the paramedics to make their medical analysis on the

internal state of the patient and the implant.

The complete system should be designed in a multidisciplinary

manner, keeping both the properties of the implant and the intelligent

system in mind. The tasks which should be solved are divided into

material sciences, aimed to keep the properties of the hip

endoprosthesis, and bio-engineering, aimed to develop the common

system including hardware and software development.

 19. Interaction Simulation For IoT Systems

127

Within development of the hip endoprosthesis requirements to

the biocompatibility with human tissues and sufficient strength

characteristics of the material should be considered. The requirement

for high strength is due to the fact that during the operation the implant

is subjected to extreme external loads of various kinds to fixate the

prosthesis, which can lead to fracture of the stem. Thus, the strength

characteristics of the endoprosthesis material that determine the

strength stocks and the mass of the endoprosthesis play a key role in the

design and choice of the implant material.

In the case of the installation of the intellectual system, it

becomes necessary to form a blind hole in the endoprosthesis femoral

stem. As a consequence, the change in the design of the system and the

introduction of a voltage concentration can lead to a redistribution of

stresses during the operation of the implant and its destruction. On the

other hand, the materials used can have its effect on the possibility of

inductive powering and wireless communication.

19.3.4 Interaction Simulation for the Remote Laboratories

The Interactive platform for Embedded Software Development

(ISRT) [17,22] consists of a number of smaller dedicated experiments

which allow students to study and experiment on different aspects of

embedded systems and communication tools over the internet. The aim

is to prepare students for IoT. The series of experiments include

experiments on the manipula-tion of components (LED-lights, stepper

motors), on communication (mobile phone ma-nipulation), on security

(face detection through image detection) and programming (in C++,

Python).

The ISRT was built to let students of bachelor and master studies

in software development experiment and self-study the different aspect

of programming and controlling. After the self-study, students get a

project assignment in which they use the different skills they ac-quired

using the ISRT. Evaluation of the learning outcomes was done on the

project re-sults.

Tasks include transformation of data, connecting and using

different sensors for physical parameters (temperature, light intensity,

luminosity, distance), image recognition, detecting time-delays in the

execution of programs, access to remote working systems with different

protocols like Wi-Fi, Bluetooth Low Energy and GSM. The goal of the

19. Interaction Simulation For IoT Systems

128

predefined tasks is that students later on will work on an own-defined

project in which they combine and use the knowledge to make a

physical remote sensing device for some physical status (e.g. ecological

measurements, climate control measurements).

19.3.5 Interaction Simulation for Intelligent transport

There are several technologies which are developing in the field

of connected cars: Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure

(V2I), Vehicle-to-Device (V2D), Vehicle-to-Pedestrian (V2P),

Vehicle-to-Home (V2H), Vehicle-to-Device (V2D), Vehicle-to-Grid

(V2G) solutions [23,24].

Electric vehicles (EV) can be thought of as being a part of the

global smart grid. As it is known, the term smart grid is defined

primarily by its ability to integrate Information and Communications

Technology with large-scale energy networks aimed to increase

environmental friendliness of generation, transmission and distribution

of electricity and efficiency of the system and has following major

components: mass production, transfer, distribution, consumers, service

providers, operations, markets [11].

For the reducing complexity of the IoT system it is important to

teach students of Software Engineering specialitites to simulate and

model interaction. For this case a prototype has been developed to

mimic an electrical vehical charging station which allows to charge Li-

on batteries with a dedicated charging module as a part of ISRT.

Several tasks need to be fulfilled in the charging station:

- security and identity control of the client who wants to recharge

his vehicle

- checking of charging level of the attached batteries

- payment of charging: upfront for limited amount of charging or

over subscription

- monitoring of charging time

- pricing of charging energy

- communication with the user

- end of charging when charge reached the full level.

Manipulation is possible locally through RFID access as well as

online. The hardware prototype is in fig 2. For physical access a RFID

card (ISO 14443A) is used or a dongle which is distributed to the

subscribed users of the system.

 19. Interaction Simulation For IoT Systems

129

Remote charging is organised with the usage of Raspberry Pi3,

connected to the Internet (either Ethernet, or WiFi or 3G). Clients can

use different methods of access and control (laptop, tablet,

smartphone..) (see Fig. 3). Software is developed on Python, and

connected to the remote server of the ISRT by get request. Server send

request to the hardware prototype (charging station) as Start and Stop

commands and request for the time of charging in seconds.

Remote control is only possible for the subscription users of the

ISRT. At the online panel there is also presented the price of the

electricity (Fig.19.6).

Fig.19.6 – Hardware prototype of the simulated charging station.

In this setup, engineering students need to perform all tasks

which will be available in commercial setups, and they can experiments

with different approaches and different human-machine interfaces. The

multitude of addressed communication platforms makes it a real-life

setup.

The ISRT-server is a platform in Zaporizhzhia Polytechnic

National University for remote laboratories, in order to train students in

IoT-task [22]. It is ideal for the scalability of the charging station case.

A ready made black-box charging station module is available in the

ISRT so that students can work on the communication and client layer.

Next they can also develop their own charging station hardware and

eventually put in more functionality and hardware is necessary. In

combination they make the complete system. Extra features could be

19. Interaction Simulation For IoT Systems

130

different methods of fast and slow charging, multiple car charging,

payment locally for single users without subscription or dongle,

helpdesk access from the charging station over messages or chat to the

service provider in case of problems, notification of charging clients

that the charging session ended by sms.. Opportunities and extended

possibilities are trivial [25].

Fig.19.7 – Software system layout

Fig.19.8 – Online Charging Terminal

 19. Interaction Simulation For IoT Systems

131

Flexibility of ISRT infrastructure allows to increase existing

prototype into grid what will the next step of the research.

19.4 Work related analysis

Thus, given work has been devoted to the description of the

possibilities for the simulation of the interactions in the IoT systems.

Also we paid attention to the practical examples of the interaction

simulation.

Notation and examples of implementation of the Interaction Flow

Modeling Language are described in [7-10]. Implementation of the

FSM models are described in [13-15,17].

The basic theory on formal methods, model checking and Kripke

models are analysed in [26-31]. Addition material with in-depth

descriptions could be found in the literature given below and based on

analysis of education programs of Newcastle University [32] and other

ALIOT consortium universities.

Conclusions and questions

In order to better understand and assimilate the educational

material that is presented in this section, we invite you to answer the

following questions:

1. Which types of interactions should be designed in the IoT

systems?

2. From which layers consists IoT systems architecture?

3. Which layer of IoT system architecture serves as an

integration layer.

4. Which patterns could be used for designing different types of

interaction with IoT systems?

5. Which types of interactions from the point of view of the user

could be defined?

6. Which types of interactions could be described with

Interaction Flow Modeling Language?

7. Which types of interactions could be described with UML?

8. Which types of interactions could be simulated with FSM?

19. Interaction Simulation For IoT Systems

132

9. Which types of interactions could be simulated with Kripke

models?

References

1. C. Rowland, "What’s different about user experience design for the

Internet of Things?", O'Reilly Media, 2019. Available:

https://www.oreilly.com/learning/whats-different-about-user-experience-

design-for-the-internet-of-things. [Accessed: 28- Jul- 2019]. What’s different

about user experience design for the Internet of Things? [Online Access]:

https://www.oreilly.com/learning/whats-different-about-user-experience-

design-for-the-internet-of-things

2. "Designing Connected Products", O’Reilly | Safari, 2019. Available:

https://www.oreilly.com/library/view/designing-connected-

products/9781449372682/. [Accessed: 28- Jul- 2019].J. Groopma Product

manufacturers: It's time to rethink the IoT user interface [Online Access]:

https://internetofthingsagenda.techtarget.com/feature/Product-manufacturers-

Its-time-to-rethink-the-IoT-user-interface

3. M. Brambilla, E. Umuhoza and R. Acerbis, "Model-driven

development of user interfaces for IoT systems via domain-specific

components and patterns", Journal of Internet Services and Applications, vol.

8, no. 1, 2017. Available: 10.1186/s13174-017-0064-1 [Accessed 28 July

2019].P. Strouks, 4 Stages of IoT architecture explained in simple words

[Online Access]: https://medium.com/datadriveninvestor/4-stages-of-iot-

architecture-explained-in-simple-words-b2ea8b4f777f

4. "IoT Architecture Explained: Building Blocks and How They Work",

Scnsoft.com, 2019. Available: https://www.scnsoft.com/blog/iot-architecture-

in-a-nutshell-and-how-it-works. [Accessed: 28- Jul- 2019].

5. Guth J. et al. (2018) A Detailed Analysis of IoT Platform

Architectures: Concepts, Similarities, and Differences. In: Di Martino B., Li

KC., Yang L., Esposito A. (eds) Internet of Everything. Internet of Things

(Technology, Communications and Computing). Springer, Singapore

6. "Design Patterns for the Internet of Things", Community.arm.com,

2019. Available: https://community.arm.com/iot/b/blog/posts/design-patterns-

for-an-internet-of-things. [Accessed: 28- Jul- 2019].

7. M. Vega-Barbas, I. Pau, J. C. Augusto and F. Seoane, "Interaction

Patterns for Smart Spaces: A Confident Interaction Design Solution for

Pervasive Sensitive IoT Services," in IEEE Access, vol. 6, P. 1126-1136, 2018.

8. "IFML: The Interaction Flow Modeling Language | The OMG

standard for front-end design", Ifml.org, 2019. Available:

https://www.ifml.org/. [Accessed: 28- Jul- 2019].

9. “IFML online tool” Available: http://www.ifmledit.org/

https://internetofthingsagenda.techtarget.com/feature/Product-manufacturers-Its-time-to-rethink-the-IoT-user-interface
https://internetofthingsagenda.techtarget.com/feature/Product-manufacturers-Its-time-to-rethink-the-IoT-user-interface
https://medium.com/datadriveninvestor/4-stages-of-iot-architecture-explained-in-simple-words-b2ea8b4f777f
https://medium.com/datadriveninvestor/4-stages-of-iot-architecture-explained-in-simple-words-b2ea8b4f777f
http://www.ifmledit.org/

 19. Interaction Simulation For IoT Systems

133

10. M. Bambilo, “Interaction Flow Modeling Language in the IIoT

context”. [Online] Available: https://www.omg.org/news/meetings/tc/ma-

15/special-events/iiot-pdf/Brambilla.pdf

11. Korotunov, S., Tabunshchyk, G., Wolff, C.: Cyber-Physical Systems

Architectures and Modeling Methods Analysis for Smart Grids. 2018 IEEE

13th International Scientific and Technical Conference on Computer Sciences

and Information Technologies (CSIT). (2018).

12. Miclea, L., Sanislav, T. “About dependability in cyber-physical

systems”. 2011 9th East-West Design & Test Symposium (EWDTS). (2011).

13. Remote and virtual tools in engineering: student textbook /general

editorship Dr.Ing.Karsten Henke. – Zaporizhzhya: Dike Pole, 2016. – рр. 250.

14. Poliakov M. Hybrid Models of Studied Objects Using Remote

Laboratories for Teaching Design of Control Systems/ M. Poliakov,

T.Larionova, G. Tabunshchyk, A. Parkhomenko and Karsten

Henke//International Journal of Online Engineering (iJOE), Vol.9(2016),

Vienna,IAOE, P. 7-13. http://dx.doi.org/10.3991/ijoe.v12i09.6128.

15. S. Korotunov, G.Tabunshchyk, K. Henke, D. Wuttke, Analysis of the

Verification Approaches for the CyberPhysical Systems. Proceedings of the

Second International Workshop on Computer Modeling and Intelligent

Systems (CMIS-2019), Zaporizhzhia, Ukraine, April 15-19, 2019. –PP. 950-

961 CEUR-WS.org, online http://ceur-ws.org/Vol-2353/paper75.pdf

16. Tabunshchyk G. Flexible Technologies for Smart Campus/ D. Van

Merode, G. Tabunshchyk, K. Patrakhalko, Y. Goncharov // Proceedings of

XIІІ International Conference on Remote Engineering and Virtual

Instrumentation (REV2016) (24-26 February, 2016, Madrid, Spain) UNED:

P. 58-62.

17. Project Oriented Teaching Approaches for E-learning Environment

/P. Arras, D. Van Merode, G. Tabunshchyk // IEEE 9th International

Conference on Intelligent Data Acquisition and Advanced Computing Systems

(IDAACS), 2017. -P.317-320. DOI: 10.1109/IDAACS.2017.8095097

18. Tabunshchyk G. Intellectual Flexible Platform for Smart Beacons/G.

Tabunshchyk, D. Van Merode// In book: Edit by M. Auer, D. Zhutin Online

Engineering and Internet of Things, Springer International Publishing, P. 895-

900. https://doi.org/10.1007/978-3-319-64352-6_83

19. Tabunshchyk G. Interactive platform for Embedded Software

Development Study / G. Tabunshchyk, D. Van Merode, P. Arras, K. Henke, V.

Okhmak// In book: Edit by M. Auer, D. Zhutin Online Engineering and

Internet of Things, Springer International Publishing, P. 315-321. DOI

10.1009/978-3-319-64352-6_30.

20. G. Tabunshchyk, O. Petrova and P. Arras, "Implementation of Audio

Navigation for Smart Campus." Proceedings of the Second International

https://www.omg.org/news/meetings/tc/ma-15/special-events/iiot-pdf/Brambilla.pdf
https://www.omg.org/news/meetings/tc/ma-15/special-events/iiot-pdf/Brambilla.pdf
http://dx.doi.org/10.3991/ijoe.v12i09.6128

19. Interaction Simulation For IoT Systems

134

Workshop on Computer Modeling and Intelligent Systems (CMIS-2019),

Zaporizhzhia, Ukraine, April 15-19, 2019, P. 267-276.

21. Engineering Education for HealthCare Purposes: A Ukrainian

Perspective // Galyna Tabunshchyk, Anzhelika Parkhomenko, Serhij

Morshchavka, David Luengo / Conf. proc. of the XIVth International

Conference on Perspective Technologies and Methods in MEMS Design

(MEMSTECH), Lviv, Polyana, 18-21 April, -PP. 245 – 249.

22. G. Tabunshchyk, P. Arras, T. Kapliienko, Sustainability of the

Remote Laboratories based on Systems with Limited Resources // In book:

Smart Industry & Smart Education P. 197-224.

23. F. Granda, L. Azpilicueta, C. Vargas-Rosales, R. Lopez-Iturri, E.

Aguirre, J. Javier-Astrain, J. Villandangos, F. Falcone, “Spatial

characterization of radio propagation channel in uban vehicle-to-infrastructure

environments to support WSNs deployment”, in Sensors 2017, vol 17, 1313;

doi:10.3390/s17061313 ,2017.

24. K. C. Dey, A. Rayamajhi, M. Chowdhury, P. Bhavsar, J. Martin,

“Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication

in a heterogeneous wireless network – Performance evaluation”, Elsevier,

2016, https://doi.org/10.1016/J.TRC.2016.03.008

25. G. Tabunshchyk, D. Van Merode, P. Arras, K. Henke, V. Okhmak,

“Interactive platform for Embedded Software Development Study”, in: Edit by

M. Auer, D. Zhutin Online Engineering and Internet of Things, Springer

International Publishing, P. 315-321. DOI 10.1009/978-3-319-64352-6_30

26. P. Grant, “Elementary Computability, Formal Languages and

Automata”. Software & Microsystems. 1, 171 (1982).

27. D. Gabbay, Saul A. Kripke, “Semantical considerations for modal

logics”. Proceedings of a Colloquium on Modal and Many-valued Logics,

Helsinki, 23-26 August, 1962, Acta Philosophica Fennica 1963, P. 83–94. The

Journal of Symbolic Logic. 34, 501 (1969).

28. M. Müller-Olm, D. Schmidt, B. Steffen, “Model-Checking. Static

Analysis”. P. 330-354 (1999).

29. A. Pnueli, The temporal logic of programs. 18th Annual Symposium

on Foundations of Computer Science (sfcs 1977). (1977).

30. E. Clarke, E. Emerson, A. Sistla, “Automatic verification of finite-

state concurrent systems using temporal logic specifications”. ACM

Transactions on Programming Languages and Systems. 8, P. 244-263 (1986).

31. S. Tonetta, “Linear-time Temporal Logic with Event Freezing

Functions”. Electronic Proceedings in Theoretical Computer Science. 256,

195-209 (2017).

32. https://www.ncl.ac.uk/postgraduate/courses/degrees/advanced-

computer-science-msc/#profile

https://doi.org/10.1016/J.TRC.2016.03.008
https://www.ncl.ac.uk/postgraduate/courses/degrees/advanced-computer-science-msc/#profile
https://www.ncl.ac.uk/postgraduate/courses/degrees/advanced-computer-science-msc/#profile

20. Software Defined Networks Basics

135

PART VI. SOFTWARE DEFINED NETWORKS AND IOT

20. SOFTWARE DEFINED NETWORKS BASICS

Dr. V. V. Shkarupylo, M.Sc. D. Mazur (ZNTU)

Contents

Abbreviations .. 136

20.1 SDN architecture. Fundamental notions, principles and concepts

 ... 137

20.1.1 The evolution of networks, switches and control planes 137

20.1.2 SDN architecture .. 138

20.1.3 SDN predecessors ... 139

20.1.4 Network virtualization ... 141

20.2 An in-depth look at the aspects of implementation. Differentiation

between Control and Data Planes .. 142

20.2.1 Fundamental characteristics of SDN. Plane separation 142

20.2.2 SDN operations .. 143

20.2.3 SDN switches ... 146

20.2.4 SDN controller. Existing SDN controller implementations and

their comparison .. 146

20.3 OpenFlow protocol. The basics, peculiarities and limitations ... 150

20.3.1 OpenFlow specification overview .. 150

20.3.2 OpenFlow switch ... 151

20.3.3 OpenFlow controller .. 153

20.3.4 OpenFlow protocol ... 154

20.3.5 OpenFlow v1.0 specification .. 155

20.3.6 OpenFlow v1.1 specification .. 156

20.3.7 OpenFlow v1.2 specification .. 158

20.3.8 OpenFlow v1.3 specification .. 158

20.4 Work related analysis .. 161

Conclusion and questions .. 162

References ... 163

20. Software Defined Networks Basics

136

Abbreviations

ACL – Access Control List

API – Application Programming Interface

ASIC - Application-specific Integrated Circuit

ATM – Asynchronous Transfer Mode

DARPA – Defense Advanced Research Projects Agency

IDS – Intrusion Detection System

IP – Internet Protocol

MAC – Media Access Control

NEMs – Network Equipment Manufacturers

OpenSig – Open Signaling

OVS – Open vSwitch

QoS – Quality of Services

REST – Representational State Transfer

SDN – Software-defined Network

TCAM – Ternary Content Addressable Memory

TCP – Transmission Control Protocol

UDP – User Datagram Protocol

VLAN – Virtual Local Area Network

20. Software Defined Networks Basics

137

20.1 SDN architecture. Fundamental notions, principles and

concepts

20.1.1 The evolution of networks, switches and control planes

Since the first network was created in 1969, almost everything

other than the physical layer (layer one) was implemented in software.

Even the simplest tasks, such as MAC-level decisions, were used by

software inside the devices. This remained true even through the early

days of the commercialized Internet in the early 1990s. But step by step

networks have changed, and practically everything has been

implemented at the physical level through a short time. In the Fig. 20.1

we can see the evolutions of the networks [1].

Fig. 20.1 – Migration of layers into the hardware

The network device evolution we have recounted thus far has

yielded the following current situation:

– bridging (layer two forwarding). Basic layer two MAC

forwarding of packets is handled in the hardware tables;

– routing (layer three forwarding). To keep up with today’s high-

speed links and to route packets at link speeds, layer three forwarding

functionality is also implemented in hardware tables;

20. Software Defined Networks Basics

138

– advanced filtering and prioritization. General traffic management

rules such as ACLs, which filter, forward, and prioritize packets, are

handled via hardware tables located in the hardware (e.g., in TCAMs)

and accessed through low-level software;

– control. The control software used to make broader routing

decisions and to interact with other devices in order to converge on

topologies and routing paths is implemented in software that runs

autonomously inside the devices. Since the current control plane

software in networking devices lacks the ability to distribute policy

information about such things as security, QoS, and ACLs, these

features must still be provisioned through relatively primitive

configuration and management interfaces.

Given this landscape of layer two and layer three hardware

handling most forwarding tasks, software in the device providing

control plane functionality, and policy implemented via configuration

and management interfaces, an opportunity presents itself to simplify

networking devices and move forward to the next generation of

networking [1].

20.1.2 SDN architecture

SDN is about moving that control software off the device and into

a centrally located compute resource that is capable of seeing the entire

network and making decisions that are optimal, given a complete

understanding of the situation. According to this, we can to define 3

layers of SDN architecture (Fig. 20.2):

– forwarding. Forwarding responsibilities, implemented in

hardware tables, remain on the device. In addition, features such as

filtering based on ACLs and traffic prioritization are enforced locally

on the device as well;

– control. All needed control software moved from devices to

centralized controller, which has complete view of the network. That’s

means that controller will manage the network, will provide routes

between devices, will make rules for the network and so on;

– application. Above the controller is where the network

applications run, implementing higher-level functions and, additionally,

participating in decisions about how best to manage and control packet

forwarding and distribution within the network.

20. Software Defined Networks Basics

139

Fig. 20.2 – SDN architecture

20.1.3 SDN predecessors

Concept of programmable networks appeared in the mid-90s,

when the Internet was starting experience widespread success. Because

of it networks started to growing, connecting a huge number of devices.

But some time later, appeared a problem of managing the network

infrastructure. Network devices were used as black boxes designed to

support specific protocols essential for the operation of the network,

without even guaranteeing vendor interoperability. Therefore,

modifying the control logic of such devices was not an option, severely

restricting network evolution. To remedy this situation, various efforts

focused on finding novel solutions for creating more open, extensible

and programmable networks [2].

Two of the most significant early ideas proposing ways of

separating the control software from the underlying hardware and

providing open interfaces for management and control were of the

Open Signaling (OpenSig) working group and from the Active

Networking initiative [3, 4].

OpenSig. The Open Signaling working group appeared in 1995

and focused on applying the concept of programmability in ATM

networks. The main idea was the separation of the control and data

20. Software Defined Networks Basics

140

plane of networks, with the signaling between the planes performed

through an open interface. As a result, it would be possible to control and

program ATM switches remotely, essentially turning the whole network

into a distributed platform, greatly simplifying the process of deploying

new services. The ideas advocated by the OpenSig community for open

signaling interfaces acted as motivation for further research. Towards this

direction, the Tempest framework [5], based on the OpenSig philosophy,

allowed multiple switch controllers to manage multiple partitions of the

switch simultaneously and consequently to run multiple control

architectures over the same physical ATM network. This approach gave

more freedom to network operators, as they were no longer forced to

define a single unified control architecture satisfying the control

requirements of all future network services.

Active Networking. The Active Networking initiative appeared in the

mid-90s and was mainly supported by DARPA [6]. Like OpenSig, its main

goal was the creation of programmable networks which would promote

network innovations. The main idea behind active networking is that

resources of network nodes are exposed through a network API, allowing

network operators to actively control the nodes as they desire by executing

arbitrary code. Therefore, contrary to the static functionality offered by

OpenSig networks, active networking allowed the rapid deployment of

customized services and the dynamic configuration of networks at run-

time.

The general architecture of active networks defines a three-layer stack

on active nodes. At the bottom layer sits an operating system (NodeOS)

multiplexing the node’s communication, memory and computational

resources among the packet flows traversing the node. Various projects

proposing different implementations of the NodeOS exist, with some

prominent examples being the NodeOS project and Bowman. At the next

layer exist one or more execution environments providing a model for

writing active networking applications, including ANTS and PLAN.

Finally, at the top layer are the active applications themselves, i.e. the code

developed by network operators.

Two programming models fall within the work of the active

networking community; the capsule model, in which the code to be

executed is included in regular data packets; and the programmable

router/switch model, in which the code to be executed at network nodes is

established through out-of-band mechanisms. Out of the two, the capsule

20. Software Defined Networks Basics

141

model came to be the most innovative and most closely associated with

active networking. The reason is that it offered a radically different

approach to network management, providing a simple method of installing

new data plane functionality across network paths. However, both models

had a significant impact and left an important legacy, since many of the

concepts met in SDN (separation of the control and data plane, network

APIs etc.) come directly from the efforts of the active networking

community [2].

20.1.4 Network virtualization

The urgency for automation, multitenancy, and multipathing has

increased as a result of the scale and fluidity introduced by server and

storage virtualization. The general idea of virtualization is that you create a

higher-level abstraction that runs on top of the actual physical entity you

are abstracting. The growth of compute and storage server virtualization

has created demand for network virtualization. This means having a virtual

abstraction of a network running on top of the actual physical network.

With virtualization, the network administrator should be able to create a

network anytime and anywhere he chooses, as well as expanding and

contracting networks that already exist. Intelligent virtualization software

should be capable of this task without requiring the upper virtualized layer

to be aware of what is occurring at the physical layer [1].

Server virtualization has caused the scale of networks to increase as

well, and this increased scale has put pressure on layer two and layer three

networks as they exist today. Some of these pressures can be alleviated to

some degree by tunnels and other types of technologies, but fundamental

network issues remain, even in those situations. Consequently, the degree

of network virtualization required to keep pace with data center expansion

and innovation is not possible with the network technology that is available

today [1].

To summarize, advances in data center technology have caused

weaknesses in the current networking technology to become more

apparent. This situation has spurred demand for better ways to construct

and manage networks [7], and that demand has driven innovation around

SDN [8].

20. Software Defined Networks Basics

142

20.2 An in-depth look at the aspects of implementation.

Differentiation between Control and Data Planes

20.2.1 Fundamental characteristics of SDN. Plane separation

Software Defined Networking, as it evolved from prior proposals,

standards, and implementations such as ForCES, 4D, and Ethane, is

characterized by five fundamental traits: plane separation, a simplified

device, centralized control, network automation and virtualization, and

openness.

The first fundamental characteristic of SDN is the separation of the

forwarding and control planes. Forwarding functionality, including the

logic and tables for choosing how to deal with incoming packets based on

characteristics such as MAC address, IP address, and VLAN ID, resides in

the forwarding plane. The fundamental actions performed by the

forwarding plane can be described by the way it dispenses with arriving

packets. It may forward, drop, consume, or replicate an incoming packet.

For basic forwarding, the device determines the correct output port by

performing a lookup in the address table in the hardware ASIC. A packet

may be dropped due to buffer overflow conditions or due to specific

filtering resulting from a QoS rate-limiting function, for example. Special-

case packets that require processing by the control or management planes

are consumed and passed to the appropriate plane. Finally, a special case of

forwarding pertains to multicast, where the incoming packet must be

replicated before forwarding the various copies out different output ports.

The protocols, logic, and algorithms that are used to program the

forwarding plane reside in the control plane. Many of these protocols and

algorithms require global knowledge of the network. The control plane

determines how the forwarding tables and logic in the data plane should be

programmed or configured. Since in a traditional network each device has

its own control plane, the primary task of that control plane is to run

routing or switching protocols so that all the distributed forwarding tables

on the devices throughout the network stay synchronized. The most basic

outcome of this synchronization is the prevention of loops.

Although these planes have traditionally been considered logically

separate, they co-reside in legacy Internet switches. In SDN, the control

plane is moved off the switching device and onto a centralized controller

[1].

20. Software Defined Networks Basics

143

20.2.2 SDN operations

At a conceptual level, the behavior and operation of a Software Defined

Network is straightforward. In Fig. 20.3 we provide a graphical depiction of

the operation of the basic components of SDN: the SDN devices, the

controller, and the applications. The easiest way to understand the operation

is to look at it from the bottom up, starting with the SDN device. As shown

in Fig. 20.3, the SDN devices contain forwarding functionality for deciding

what to do with each incoming packet. The devices also contain the data that

drives those forwarding decisions. The data itself is actually represented by

the flows defined by the controller, as depicted in the upper-left portion of

each device.

A flow describes a set of packets transferred from one network

endpoint (or set of endpoints) to another endpoint (or set of endpoints).

The endpoints may be defined as IP address TCP/UDP port pairs,

VLAN endpoints, layer three tunnel endpoints, and input ports, among other

things. One set of rules describes the forwarding actions that the device

should take for all packets belonging to that flow. A flow is unidirectional in

that packets flowing between the same two endpoints in the opposite

direction could each constitute a separate flow. Flows are represented on a

device as a flow entry.

Fig. 20.3 – SDN operations overview

20. Software Defined Networks Basics

144

A flow table resides on the network device and consists of a series of

flow entries and the actions to perform when a packet matching that flow

arrives at the device. When the SDN device receives a packet, it consults its

flow tables in search of a match. These flow tables had been constructed

previously when the controller downloaded appropriate flow rules to the

device. If the SDN device finds a match, it takes the appropriate configured

action, which usually entails forwarding the packet. If it does not find a

match, the switch can either drop the packet or pass it to the controller,

depending on the version of OpenFlow and the configuration of the switch.

The definition of a flow is a relatively simple programming expression

of what may be a very complex control plane calculation previously

performed by the controller. For the reader who is less familiar with

traditional switching hardware architecture, it is important to understand that

this complexity is such that it simply cannot be performed at line rates and

instead must be digested by the control plane and reduced to simple rules

that can be processed at that speed. In Open SDN, this digested form is the

flow entry.

The SDN controller is responsible for abstracting the network of SDN

devices it controls and presenting an abstraction of these network resources

to the SDN applications running above. The controller allows the SDN

application to define flows on devices and to help the application respond to

packets that are forwarded to the controller by the SDN devices. In Fig. 20.3

we see on the right side of the controller that it maintains a view of the entire

network that it controls. This permits it to calculate optimal forwarding

solutions for the network in a deterministic, predictable manner. Since one

controller can control a large number of network devices, these calculations

are normally performed on a high-performance machine with an order-of-

magnitude performance advantage over the CPU and memory capacity than

is typically afforded to the network devices themselves. For example, a

controller might be implemented on an eight-core, 2-GHz CPU versus the

single-core, 1-GHz CPU that is more typical on a switch.

SDN applications are built on top of the controller. These applications

should not be confused with the application layer defined in the seven-layer

OSI model of computer networking. Since SDN applications are really part

of network layers two and three, this concept is orthogonal to that of

applications in the tight hierarchy of OSI protocol layers. The SDN

application interfaces with the controller, using it to set proactive flows on

the devices and to receive packets that have been forwarded to the controller.

20. Software Defined Networks Basics

145

Proactive flows are established by the application; typically, the application

will set these flows when the application starts up, and the flows will persist

until some configuration change is made. This kind of proactive flow is

known as a static flow. Another kind of proactive flow is where the

controller decides to modify a flow based on the traffic load currently being

driven through a network device.

In addition to flows defined proactively by the application, some flows

are defined in response to a packet forwarded to the controller. Upon receipt

of incoming packets that have been forwarded to the controller, the SDN

application will instruct the controller as to how to respond to the packet and,

if appropriate, will establish new flows on the device in order to allow that

device to respond locally the next time it sees a packet belonging to that

flow. Such flows are called reactive flows. In this way, it is now possible to

write software applications that implement forwarding, routing, overlay,

multipath, and access control functions, among others.

There are also reactive flows that are defined or modified as a result of

stimuli from sources other than packets from the controller. For example, the

controller can insert flows reactively in response to other data sources such

as intrusion detection systems (IDS) or the NetFlow traffic analyzer [9].

An OpenFlow protocol as the mean of communication between the

controller and the device is depicted in Fig. 20.4 [1].

Fig. 20.4 – Controller-to-device communication

20. Software Defined Networks Basics

146

20.2.3 SDN switches

First of all, to create a SDN, you need special switches. A number

of SDN switches implementations are available today, both commercial

and open source. Software SDN devices are predominantly open

source. Currently, two main alternatives are available: Open vSwitch

(OVS) from Nicira and Indigo from Big Switch [10, 11]. Incumbent

network equipment manufacturers (NEMs), such as Cisco, HP, NEC,

IBM, Juniper, and Extreme, have added OpenFlow support to some of

their legacy switches. Generally, these switches may operate in both

legacy mode as well as OpenFlow mode. There is also a new class of

devices calledwhite-box switches, which are minimalist in that they are

built primarily from merchant silicon switching chips and a commodity

CPU and memory by a low-cost original device manufacturer (ODM)

lacking a well-known brand name. One of the premises of SDN is that

the physical switching infrastructure may be built from OpenFlow-

enabled white-box switches at far less direct cost than switches from

established NEMs. Most legacy control plane software is absent from

these devices, since this functionality is largely expected to be provided

by a centralized controller. Such white-box devices often use the open

source OVS or Indigo switch code for the OpenFlow logic, then map

the packet-processing part of those switch implementations to their

particular hardware [1].

20.2.4 SDN controller. Existing SDN controller implementations

and their comparison

The controller maintains a view of the entire network, implements

policy decisions, controls all the SDN devices that comprise the

network infrastructure, and provides a northbound API for applications.

When we have said that the controller implements policy decisions

regarding routing, forwarding, redirecting, load balancing, and the like,

these statements referred to both the controller and the applications that

make use of that controller. Controllers often come with their own set

of common application modules, such as a learning switch, a router, a

basic firewall, and a simple load balancer. These are really SDN

applications, but they are often bundled with the controller. Here we

focus strictly on the controller.

20. Software Defined Networks Basics

147

The anatomy of an SDN controller is represented in Fig. 20.5. The

modules that provide the controller’s core functionality, both a

northbound and a southbound API, and a few sample applications that

might use the controller are depicted in Fig. 20.5. As we described

earlier, the southbound API is used to interface with the SDN devices.

Fig. 20.5 – SDN controller components

This API is OpenFlow in the case of Open SDN or some

proprietary alternative in other SDN solutions. It is worth noting that in

some product offerings, both OpenFlow and alternatives coexist on the

same controller. Early work on the southbound API has resulted in

more maturity of that interface with respect to its definition and

standardization. [1] OpenFlow itself is the best example of this

maturity, but de facto standards such as the Cisco CLI and SNMP also

represent standardization in the southbound-facing interface.

OpenFlow’s companion protocol, OF-Config [12], and Nicira’s Open

vSwitch Database Management Protocol (OVSDB) [13] are both open

protocols for the southbound interface, though these are limited to

configuration roles.

Unfortunately, there is currently no northbound counterpart to the

southbound OpenFlow standard or even the de facto legacy standards.

This lack of a standard for the controller-to-application interface is

considered a current deficiency in SDN, and some bodies are

20. Software Defined Networks Basics

148

developing proposals to standardize it. The absence of a standard

notwithstanding, northbound interfaces have been implemented in a

number of disparate forms. For example, the Floodlight controller

includes a Java API and a Representational State Transfer (RESTful)

API [14]. The OpenDaylight controller provides a RESTful API for

applications running on separate machines [15]. The northbound API

represents an outstanding opportunity for innovation and collaboration

among vendors and the open source community.

Requirements to SDN controllers can be divided into 2 main

characteristics:

– performance: throughput (about 10M events per second), delay

(us);

– programmability: functionality (applications and services),

programming Interface.

There are many different controllers existing. All of them have

different characteristics. The main controllers and their general

characteristics are listed in the table 20.1.

Table 20.1 – The main controllers and their general characteristics

20. Software Defined Networks Basics

149

In the Fig. 20.6 the comparison of controllers is provided. The

dependence between flows per second and the number of threads is

shown. The increase of threads number stipulates the increase of flows

per second. More flows per second gives more performance.

Fig. 20.6 – Comparison of controllers

In addition to the above controllers, there is a controller with very

high performance. It is called In-kernel controller. The comparison

between In-kernel controller and others is given in Fig. 20.7.

Fig. 20.7 – Comparison between In-kernel controller and others

20. Software Defined Networks Basics

150

As it can be seen in Fig. 20.7, the number of flows per second of

this controller is significantly higher than others.

High performance of this controller is provided by the

implementation in the Linux kernel. In-kernel controller is super

productive, because of less time to work with virtual memory, but it has

limitations as well. First of all, it's very difficult to develop your

applications because of low-level programming language. Also it has

limited number of libraries and debugging tools. To provide high

performance, hardware of controller must be very powerful. Otherwise,

there is a high risk of crashing the whole system.

20.3 OpenFlow protocol. The basics, peculiarities and

limitations

20.3.1 OpenFlow specification overview

The OpenFlow specification has been evolving for a number of

years. The nonprofit Internet organization openflow.org was created in

2008 as a mooring to promote and support OpenFlow. Though

openflow.org existed formally on the Internet, in the early years the

physical organization was really just a group of people that met

informally at Stanford University. From its inception OpenFlow was

intended to “belong” to the research community to serve as a platform

for open network switching experimentation, with an eye on

commercial use through commercial implementations of this public

specification. The first release, Version 1.0.0, appeared on December

31, 2009, though numerous point prereleases existed before then and

were made available for experimental purposes as the specification

evolved. At this point and continuing up through release 1.1.0,

development and management of the specification were performed

under the auspices of openflow.org. On March 21, 2011, the Open

Network Foundation (ONF) was created for the express purpose of

accelerating the delivery and commercialization of SDN. There are a

number of proponents of SDN that offer SDN solutions that are not

based on OpenFlow. For the ONF, however, OpenFlow remains at the

core of its SDN vision for the future. For this reason, the ONF has

become the responsible entity for the evolving OpenFlow specification.

20. Software Defined Networks Basics

151

Starting after the release of V.1.1, revisions to the OpenFlow

specification have been released and managed by the ONF.

One could get the impression from the fanfare surrounding

OpenFlow that the advent of this technology has been accompanied by

concomitant innovation in switching hardware. The reality is a bit more

complicated. The OpenFlow designers realized a number of years ago

that many switches were really built around ASICs controlled by rules

encoded in tables that could be programmed. Over time, fewer

homegrown versions of these switching chips were being developed,

and there was greater consolidation in the semiconductor industry.

More manufacturers’ switches were based on ever-consolidating

switching architecture and programmability, with ever-increasing use

of programmable switching chips from a relatively small number of

merchant silicon vendors. OpenFlow is an attempt to allow the

programming, in a generic way, of the various implementations of

switches that conform to this new paradigm. OpenFlow attempts to

exploit the table-driven design extant in many of the current silicon

solutions. As the number of silicon vendors consolidates, there should

be a greater possibility for alignment with future OpenFlow versions.

It is worth pausing here to remark on the fact that we are talking a

lot about ASICs for a technology called Software Defined Networking.

Yet hardware must be part of the discussion, since it is necessary to use

this specialized silicon in order to switch packets at high line rates.

What is really meant by the word software in the name SDN, then, is

that the SDN devices are fully programmable, not that everything is

done using software running on a traditional CPU [1].

20.3.2 OpenFlow switch

The basic functions on an OpenFlow V.1.0 switch and its

relationship to a controller are depicted in Fig. 20.8. As would be

expected in a packet switch, we see that the core function is to take

packets that arrive on one port (path X on port 2 in Fig. 20.8) and

forward it through another port (port N in Fig. 20.8), making any

necessary packet modifications along the way. A unique aspect of the

OpenFlow switch is embodied in the packet-matching function shown

in Fig. 20.8. The wide, gray, double arrow in Fig. 20.8 starts in the

decision logic, shows a match with a particular entry in that table, and

20. Software Defined Networks Basics

152

directs the now-matched packet to an action box on the right. This

action box has three fundamental options for the disposition of this

arriving packet:

– forward the packet out a local port, possibly modifying certain

header fields first;

– drop the packet;

– pass the packet to the controller.

These three fundamental packet paths are illustrated in Fig. 20.8.

Fig. 20.8 – OpenFlow v1.0 compatible switch

In Fig. 20.8, in the case of path C, the packet is passed to the

controller over the secure channel shown in Fig. 20.8. If the controller

has either a control message or a data packet to give to the switch, the

controller uses this same secure channel in the reverse direction. When

20. Software Defined Networks Basics

153

the controller has a data packet to forward out through the switch, it

uses the OpenFlow PACKET_OUT message. We see in Fig. 20.8 that

such a data packet coming from the controller may take two different

paths through the OpenFlow logic, both denoted with Y.

In the rightmost case, the controller directly specifies the output

port and the packet is passed to that port N in the example. In the

leftmost path Y case, the controller indicates that it wants to defer the

forwarding decision to the packet-matching logic. A given OpenFlow

switch implementation is either OpenFlow-only or OpenFlow-hybrid.

An OpenFlow-only switch is one that forwards packet sonly according

to the OpenFlow logic described above. An OpenFlow hybrid is a

switch that can also switch packets in its legacy mode as an Ethernet

switch or IP router. One can view the hybrid case as an OpenFlow

switch residing next to a completely independent traditional switch.

Such a hybrid switch requires a preprocessing classification mechanism

that directs packets to either OpenFlow processing or the traditional

packet processing. It is probable that hybrid switches will be the norm

during the migration to pure OpenFlow implementations. Note that we

use the term OpenFlow switch in this chapter instead of the term

OpenFlow device we customarily use. This is because switch is the

term used in the OpenFlow specification. In general, though, we opt to

use the term device, since there are already non switch devices being

controlled by OpenFlow controllers, such as wireless access points [1].

20.3.3 OpenFlow controller

Modern Internet switches make millions of decisions per second

about whether or not to forward an incoming packet, to what set of

output ports it should be forwarded, and what header fields in the

packet may need to be modified, added, or removed. This is a very

complex task. The fact that this can be carried out at line rates on

multigigabit media is a technological wonder. The switching industry

has long understood that not all functions on the switching data path

can be carried out at line rates, so there has long been the notion of

splitting the pure data plane from the control plane. The data plane

matches headers, modifies packets, and forwards them based on a set of

forwarding tables and associated logic, and it does this very, very fast.

The rate of decisions being made as packets stream into a switch

20. Software Defined Networks Basics

154

through a 100 Gbps interface is astoundingly high. The control plane

runs routing and switching protocols and other logic to determine what

the forwarding tables and logic in the data plane should be. This

process is very complex and cannot be done at line rates as the packets

are being processed, and it is for this reason we have seen the control

plane separated from the data plane, even in legacy network switches.

The OpenFlow control plane differs from the legacy control plane

in three key ways. First, it can program different data plane elements

with a common, standard language, OpenFlow. Second, it exists on a

separate hardware device than the forwarding plane, unlike traditional

switches, where the control plane and data plane are instantiated in the

same physical box. This separation is made possible because the

controller can program the data plane elements remotely over the

Internet. Third, the controller can program multiple data plane elements

from a single control plane instance.

The OpenFlow controller is responsible for programming all the

packet-matching and forwarding rules in the switch. Whereas a

traditional router would run routing algorithms to determine how to

program its forwarding table, that function oran equivalent replacement

to it is now performed by the controller. Any changes that result in

recomputing routes will be programmed onto the switch by the

controller [1].

20.3.4 OpenFlow Protocol

As shown in Fig. 20.8, the OpenFlow protocol defines the

communication between an OpenFlow controller and an OpenFlow

switch. This protocol is what most uniquely identifies OpenFlow

technology. At its essence, the protocol consists of a set of messages

that are sent from the controller to the switch and a corresponding set of

messages that are sent in the opposite direction. Collectively the

messages allow the controller to program the switch so as to allow fine-

grained control over the switching of user traffic. The most basic

programming defines, modifies, and deletes flows. The endpoints may

be defined as IP address-TCP/UDP port pairs, VLAN endpoints, layer

three tunnel endpoints, or input ports, among other things. One set of

rules describes the forwarding actions that the device should take for all

packets belonging to that flow. When the controller defines a flow, it is

20. Software Defined Networks Basics

155

providing the switch with the information it needs to know how to treat

incoming packets that match that flow. The possibilities for treatment

have grown more complex as the OpenFlow protocol has evolved, but

the most basic prescriptions for treatment of an incoming packet are

denoted by paths A, B, and C in Fig. 20.8. These three options are to

forward the packet out one or more output ports, drop the packet, or

pass the packet to the controller for exception handling.

The OpenFlow protocol has evolved significantly with each

version of OpenFlow, so we cover the detailed messages of the protocol

in the version-specific sections that follow. The specification has

evolved from development point release 0.2.0 on March 28, 2008,

through release V.1.3.0, released in 2012. Numerous point releases over

the intervening years have addressed problems with earlier releases and

added incremental functionality. OpenFlow was viewed primarily as an

experimental platform in its early years. For that reason, there was little

concern on the part of the development community in advancing this

standard to provide for interoperability between releases. As OpenFlow

began to see more widespread commercial deployment, backward

compatibility has become an increasingly important issue. Many

features, however, were introduced in earlier versions of OpenFlow that

are no longer present in the current version [16].

20.3.5 OpenFlow v1.0 specification

OpenFlow v1.0 was released in December 2009 [17]. This version

supports multiple queues per output port. Queues support the ability to

provide minimum bandwidth guarantees; the bandwidth allocated to

each queue is configurable. The name slicing is derived from the ability

to provide a slice of the available network bandwidth to each queue.

Flows have been extended to include an opaque identifier, referred

to as a cookie. The cookie is specified by the controller when the flow

is installed; the cookie will be returned as part of each flow stats and

flow expired message.

The OFPST DESC (switch description) reply in v1.0 includes a

datapath description field. This is a user specifiable field that allows a

switch to return a string specified by the switch owner to describe the

switch.

20. Software Defined Networks Basics

156

The reference implementation in this version can match on IP

fields inside ARP packets. The source and destination protocol address

are mapped to the nw_src and nw_dst fields respecitively, and the

opcode is mapped to the nw_proto field.

Flow durations in stats and expiry messages in v1.0 expresses with

nanosecond resolution. Note that the accuracy of flow durations in the

reference implementation is on the order of milliseconds. The actual

accuracy particularly depends on kernel parameters.

20.3.6 OpenFlow v1.1 specification

OpenFlow v1.1 was released in February 2011 [18].

Prior versions of the OpenFlow specification did expose to the

controller the abstraction of a single table. The OpenFlow pipeline

could internally be mapped to multiple tables, such as having a separate

wildcard and exact match table, but those tables would always act

logically as a single table.

OpenFlow 1.1 introduces a more flexible pipeline with multiple

tables. Exposing multiple tables has many advantages. The first

advantage is that many hardware have multiple tables internally (for

example L2 table, L3 table, multiple TCAM lookups), and the multiple

table support of OpenFlow may enable to expose this hardware with

greater efficiency and flexibility. The second advantage is that many

network deployments combine orthogonal processing of packets (for

example ACL, QoS and routing), forcing all those processing in a

single table creates huge ruleset due to the cross product of individual

rules, multiple tables may decouple properly those processing.

The new OpenFlow pipeline with multiple tables is quite different

from the simple pipeline of prior OpenFlow versions. The new

OpenFlow pipeline expose a set of completely generic tables,

supporting the full match and full set of actions. It’s difficult to build a

pipeline abstraction that represent accurately all possible hardware,

therefore OpenFlow 1.1 is based on a generic and flexible pipeline that

may be mapped to the hardware. Some limited table capabilities are

available to denote what each table is capable of supporting.

Packets are processed through the pipeline, they are matched and

processed in the first table, and may be matched and processed in other

tables. As it goes through the pipeline, a packet is associated with an

20. Software Defined Networks Basics

157

action set, accumulating action, and a generic metadata register. The

action set is resolved at the end of the pipeline and applied to the

packet. The metadata can be matched and written at each table and

enables to carry state between tables.

OpenFlow introduces a new protocol object called instruction to

control pipeline processing. Actions which were directly attached to

flows in previous versions are now encapsulated in instructions.

Instructions may apply those actions between tables or accumulate

them in the packet action set. Instructions can also change the metadata,

or direct packet to another table.

The new group abstraction enables OpenFlow to represent a set of

ports as a single entity for forwarding packets. Different types of

groups are provided, to represent different abstractions such as

multicasting or multipathing. Each group is composed of a set group

buckets, each group bucket contains the set of actions to be applied

before forwarding to the port. Groups buckets can also forward to other

groups, enabling to chain groups together.

Prior versions of the OpenFlow specification had limited VLAN

support, it only supported a single level of VLAN tagging with

ambiguous semantic. The new tagging support has explicit actions to

add, modify and remove VLAN tags, and can support multiple level of

VLAN tagging. It also adds similar support the MPLS shim headers.

Prior versions of the OpenFlow specification assumed that all the

ports of the OpenFlow switch were physical ports. Version 1.1 adds

support for virtual ports, which can represent complex forwarding

abstractions such as LAGs or tunnels.

Prior versions of the OpenFlow specification introduced the

emergency flow cache as a way to deal with the loss of connectivity

with the controller. The emergency flow cache feature was removed in

this version of the specification, due to the lack of adoption, the

complexity to implement it and other issues with the feature semantic.

This version of the specification adds two simpler modes to deal

with the loss of connectivity with the controller. In fail secure mode,

the switch continues operating in OpenFlow mode, until it reconnects to

a controller. In fail standalone mode, the switch reverts to using normal

processing (Ethernet switching).

20. Software Defined Networks Basics

158

20.3.7 OpenFlow v1.2 specification

This version of OpenFlow was released in December 2011 [19].

Prior versions of the OpenFlow specification used a static fixed

length structure to specify ofp_match, which prevents flexible

expression of matches and prevents inclusion of new match fields. The

ofp_match has been changed to a TLV structure, called OpenFlow

Extensible Match (OXM), which dramatically increases flexibility. The

match fields themselves have been reorganised. In the previous static

structure, many fields were overloaded; for instance, tcp.src_port,

udp.src_port, and icmp.code were using the same field entry. Now,

every logical field has its own unique type.

Prior versions of the OpenFlow specification were using hand-

crafted actions to rewrite header fields. The Extensible set_field action

reuses the OXM encoding defined for matches, and enables to rewrite

any header field in a single action (EXT-13). This allows any new

match field, including experimenter fields, to be available for rewrite.

This makes the specification cleaner and eases cost of introducing new

fields.

OpenFlow v1.2 supports IPv6. Added support for matching on

IPv6 source address, destination address, protocol number, traffic class,

ICMPv6 type, ICMPv6 code and IPv6 neighbor discovery header fields

(EXT-1). Added support for matching on IPv6 flow label (EXT-36).

Since version 1.2, OpenFlow started to support multiple

controllers for failover (EXT-39). This scheme is entirely driven by the

controllers, so switches only need to remember the role of each

controller to help the controller election mechanism.

20.3.8 OpenFlow v1.3 specification

OpenFlow v1.3 was released in 2012 [20].

Prior versions of the OpenFlow specification included limited

expression of the capabilities of an OpenFlow switch. OpenFlow 1.3

include a more flexible framework to express capabilities (EXT-123).

The main change is the improved description of table capabilities.

Those capabilities have been moved out of the table statistics structure

in its own request/reply message, and encoded using a flexible TLV

format. This enables the additions of next-table capabilities, table-miss

20. Software Defined Networks Basics

159

flow entry capabilities and experimenter capabilities. Other changes

include renaming the ’stats’ framework into the ’multipart’ framework

to reflect the fact that it is now used for both statistics and capabilities,

and the move of port descriptions into its own multipart message to

enable support of a greater number of ports.

Prior versions of the OpenFlow specification included table

configuration flags to select one of three 3 behaviour for handling table-

misses (packet not matching any flows in the table). OpenFlow 1.3

replace those limited flags with the table-miss flow entry, a special flow

entry describing the behaviour on table miss (EXT-108). The table-miss

flow entry uses standard OpenFlow instructions and actions to process

table-miss packets, this enables to use the full flexibility of OpenFlow

in processing those packets. All previous behaviour expressed by the

table-miss config flags can be expressed using the table-miss flow

entry. Many new way of handling table-miss, such as processing table-

miss with normal, can now trivially be described by the OpenFlow

protocol.

Add support for per-flow meters (EXT-14). Per-flow meters can

be attached to flow entries and can measure and control the rate of

packets. One of the main applications of per-flow meters is to rate limit

packets sent to the controller. The per-flow meter feature is based on a

new flexible meter framework, which includes the ability to describe

complex meters through the use of multiple metering bands, metering

statistics and capabilities. Currently, only simple rate-limiter meters are

defined over this framework. Support for color-aware meters, which

support Diff-Serv style operation and are tightly integrated in the

pipeline, was postponed to a later release.

Previous version of the specification introduced the ability for a

switch to connect to multiple controllers for fault tolerance and load

balancing. Per connection event filtering improves the multi-controller

support by enabling each controller to filter events from the switch it

does not want (EXT-120).

A new set of OpenFlow messages enables a controller to configure

an event filter on its own connection to the switch. Asynchronous

messages can be filtered by type and reason. This event filter comes in

addition to other existing mechanisms that enable or disable

asynchronous messages, for example the generation of flow-removed

20. Software Defined Networks Basics

160

events can be configured per flow. Each controller can have a separate

filter for the slave role and the master/equal role.

In previous version of the specification, the channel between the

switch and the controller is exclusively made of a single TCP

connection, which does not allow exploiting the parallelism available in

most switch implementations. OpenFlow 1.3 enables a switch to create

auxiliary connections to supplement the main connection between the

switch and the controller (EXT-114). Auxiliary connections are mostly

useful to carry packet-in and packet-out messages.

In previous version of the specification, the final order of tags in a

packet was statically specified. For example, a MPLS shim header was

always inserted after all VLAN tags in the packet. OpenFlow 1.3

removes this restriction, the final order of tags in a packet is dictated by

the order of the tagging operations, and each tagging operation adds its

tag in the outermost position (EXT-121).

The logical port abstraction enables OpenFlow to support a wide

variety of encapsulations. The tunnel-id metadata

OXM_OF_TUNNEL_ID is a new OXM field that expose to the

OpenFlow pipeline metadata associated with the logical port, most

commonly the demultiplexing field from the encapsulation header

(EXT-107). For example, if the logical port performs GRE

encapsulation, the tunnel-id field would map to the GRE key field from

the GRE header. After decapsulation, OpenFlow would be able to

match the GRE key in the tunnel-id match field. Similarly, by setting

the tunnel-id, OpenFlow would be able to set the GRE key in an

encapsulated packet.

A cookie field was added to the packet-in message (EXT-7). This

field takes its value from the flow the sends the packet to the controller.

If the packet was not sent by a flow, this field is set to 0xffffffffffffffff.

Having the cookie in the packet-in enables the controller to more

efficiently classify packet-in, rather than having to match the packet

against the full flow table.

In September 2012, an OpenFlow v1.3.1 was released. Prior

versions of the OpenFlow specification included a simple scheme for

version negotiation, picking the lowest of the highest version supported

by each side. Unfortunately this scheme does not work properly in all

cases, if both implementations don’t implement all versions up to their

20. Software Defined Networks Basics

161

highest version, the scheme can fail to negotiate a version they have in

common (EXT-157).

The main change is adding a bitmap of version numbers in the

Hello messages using during negotiation. By having the full list of

version numbers, negotiation can always negotiate the appropriate

version if one is available. This version bitmap is encoded in a flexible

TLV format to retain future extensibility of the Hello message.

OpenFlow v1.3.2 was released in April 2013. Changes,

implemented in this version [16]:

– mandate in OXM that 0-bits in mask must be 0-bits in value

(EXT-238);

– allow connection initiated from one of the controllers (EXT-

252);

– add clause on frame misordering to spec (EXT-259);

– set table features doesn’t generate flow removed messages

(EXT-266);

– fix description of set table features error response (EXT-267);

– define use of generation_id in role reply messages (EXT-272);

– switch with only one flow table are not mandated to implement

goto (EXT-280).

20.4 Work related analysis

The section is based on the analysis of work and publications of

specialists from both industrial and scientific fields, e.g. Cisco [1], The

University of Edinburgh (Scotland) [2]. These publications are aimed

particularly at bringing in the idea of programmable network

(University of Cambridge [5]), describing its architecture, building

blocks, defining features, evolutional aspects (Georgia Institute of

Technology, Princeton University [6]) etc.

An insight about the predecessors of Software-defined Networking

and enabling technologies has been build, in particular, on the basis of

publications of The University of Toronto (Canada) [3], Massachusetts

Institute of Technology (MIT, Cambridge) [4].

The publications by the fellows of the aforementioned institutions

and organizations helped to build up the comprehensive picture on the

topic of Software defined Networking basics.

20. Software Defined Networks Basics

162

Conclusion and questions

Thus, the following topics have been covered in given section:

– the architectural part of SDN – its predecessors and network

virtualization aspects;

– an in-depth look at the peculiarities of SDN implementation has

been taken – an accent on the differentiation between the control and

data planes has been put – its defining role has been demonstrated;

– the versions of OpenFlow protocol specification have been

considered.

1. Describe the trend that appeared during the evolution of

networking.

2. Describe the layered structure of SDN architecture.

3. What is the reason for the emergence of programmable

networks?

4. What are the main predecessors of SDN technology?

5. What is the general idea of virtualization? What are the benefits

of a virtual network?

6. Name the fundamental characteristic of SDN.

7. Give the definition of the flow table.

8. How do the SDN-devices interact with each other using the

flow table?

9. List existing software and hardware SDN devices.

10. Describe the concept of SDN controller. Characterize the

structure of SDN controller.

11. List general characteristics of SDN controller.

12. Name some SDN controllers that you are aware of. Give a list

of existing controllers.

13. What are the basic requirements for SDN controllers?

14. Why in-kernel controller provides better performance than

analogues?

15. When did the first version of OpenFlow protocol appear?

16. List three fundamental packet paths inside the OpenFlow v1.0

switch.

17. Describe the difference between the OpenFlow control plane

and the legacy control plane.

18. What does OpenFlow protocol consist of?

20. Software Defined Networks Basics

163

19. List and describe the characteristics of OpenFlow versions.

20. Name the first version of OpenFlow protocol specification with

IPv6 protocol support.

References

1. P. Goransson and C. Black, Software defined networks: A

Comprehensive Approach. Waltham, MA: Elsevier, 2014.

2. X. Foukas, M. K. Marina, and K. Kontovasilis, “Software Defined

Networking Concepts,” P.1-33, 2014. Available:

https://homepages.inf.ed.ac.uk/mmarina/papers/sdn-chapter.pdf. [Accessed:

Nov. 22, 2018].

3. A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Open Signaling

for ATM, INTERNET and Mobile Networks (OPENSIG'98),” ACM SIGOPS

Operating Systems Review, vol. 33, no. 2, P. 15-28, 1999.

4. D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall,

and G. J. Minden, “A survey of active network research,” IEEE

Communications, vol. 35, no. 1, P. 80-86, 1997.

5. J.E. van der Merwe, S. Rooney, I. Leslie, and S. Crosby, “The

tempest-a practical framework for network programmability,” IEEE Network,

vol. 12, no. 3, P. 20-28, 1998.

6. N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an

intellectual history of programmable networks,” ACM SIGCOMM Computer

Communication Review, vol. 44, no. 2, P. 87-98, 2014.

7. Problem Statement: Overlays for Network Virtualization, RFC 7364,

2014. Available: https://tools.ietf.org/html/rfc7364. [Accessed: Nov. 22,

2018].

8. J. Brodkin, “Data Center Startups Emerging to Solve Virtualization

and Cloud Problems,” Network World, 2011. Available:

https://www.pcworld.com/article/230297/Data_Center_Startups_Emerging_to

_Solve_Virtualization_and_Cloud_Problems.html. [Accessed: Nov. 22, 2018].

9. “NetFlow Traffic Analyzer: NetFlow analyzer and bandwidth

monitoring software,” 2018. Available: https://www.solarwinds.com/netflow-

traffic-analyzer. [Accessed: Nov. 22, 2018].

10. “Production Quality, Multilayer Open Virtual Switch,” 2018.

Available: https://www.openvswitch.org/. [Accessed: Nov. 22, 2018].

11. “Open thin switching, open for business,” June 27, 2013. Available:

https://www.bigswitch.com/topics/introduction-of-indigo-virtual-switch-and-

switch-light-beta. [Accessed: Nov. 22, 2018].

12. OpenFlow Management and Configuration Protocol (OF-Config

1.1.1), Version 1.1.1, March 23, 2013. Available:

20. Software Defined Networks Basics

164

https://www.opennetworking.org/wp-content/uploads/2013/02/of-config-1-1-

1.pdf. [Accessed: Nov. 22, 2018].

13. The Open vSwitch Database Management Protocol, RFC 7047,

December 2013. Available: https://tools.ietf.org/html/rfc7047. [Accessed:

Nov. 22, 2018].

14. “Learn REST: a RESTful tutorial,” 2018. Available:

https://www.restapitutorial.com/. [Accessed: Nov. 22, 2018].

15. “Open Daylight: technical overview,” 2015. Available:

http://archive15.opendaylight.org/project/technical-overview. [Accessed: Nov.

22, 2018].

16. OpenFlow Switch Specification, Version 1.3.2, April 25, 2013.

Available: https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-spec-v1.3.2.pdf. [Accessed:

Nov. 22, 2018].

17. OpenFlow Switch Specification, Version 1.0.0, December 31, 2009.

Available: https://www.opennetworking.org/wp-

content/uploads/2013/04/openflow-spec-v1.0.0.pdf. [Accessed: Nov. 22,

2018].

18. OpenFlow Switch Specification, Version 1.1.0 Implemented,

February 28, 2011. Available: https://3vf60mmveq1g8vzn48q2o71a-

wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-spec-

v1.1.0.pdf. [Accessed: Nov. 22, 2018].

19. OpenFlow Switch Specification, Version 1.2, December 5, 2011.

Available: https://www.opennetworking.org/wp-

content/uploads/2014/10/openflow-spec-v1.2.pdf. [Accessed: Nov. 22, 2018].

20. OpenFlow Switch Specification, Version 1.3.0, June 25, 2012.

Available: http://www.cs.yale.edu/homes/yu-minlan/teach/csci599-

fall12/papers/openflow-spec-v1.3.0.pdf. [Accessed: Nov. 22, 2018].

21. SDN programming and simulation of SDN composing, configuring and scaling

165

21. SDN PROGRAMMING AND SIMULATION OF SDN

COMPOSING, CONFIGURING AND SCALING

Dr. V. V. Shkarupylo (ZNTU)

Contents

Abbreviations .. 166

21.1 On the peculiarities of SDN switches and controllers functioning

and implementation ... 167

20.1.1 Considering SDN as a system. Key components: controllers,

switches, hosts ... 167

21.1.2 SDN infrastructure simulation and emulation. Network

configuration and scaling... 170

21.1.3 Network orchestration and virtualization. Simulation of data

flows .. 170

21.2 Network programming and testing .. 172

21.2.1 Setting up the configuration of SDN network in Mininet

environment ... 172

21.2.2 Testing the soundness and consistency of SDN infrastructure

 ... 174

21.2.3 Dataflow orchestration. SDN reconfiguration and scaling 178

21.3 SDN programming and Python scripting 178

21.4 Work related analysis .. 186

Conclusion and questions .. 187

References ... 189

21. SDN programming and simulation of SDN composing, configuring and scaling

166

Abbreviations

AHP – Analytic Hierarchy Process

API – Application Programming Interface

CLI – Command-line Interface

CPU – Central Processing Unit

DISCO – Distributed SDN Control plane

HTML – HyperText Markup Language

MDSE – Model-Driven Software Engineering

NFV – Network Functions Virtualization

ODL – OpenDayLight

ONF – Open Networking Foundation

SDN – Software-defined Networking

WG – Working Group

21. SDN programming and simulation of SDN composing, configuring and scaling

167

21.1 On the peculiarities of SDN switches and controllers

functioning and implementation

These days the state of global networking can be characterized as

being on the verge of global refinement [1]. Considering the number of

nodes involved (billions), the questions of the convenience of network

management, monitoring, control, scaling and reconfiguring are

becoming more and more topical. In this context the paradigm of

Software Defined Networking (SDN) can be considered as a plausible

solution.

20.1.1 Considering SDN as a System. Key components:

controllers, switches, hosts

Prior considering the SDN as a system, the fundamental principles

of the SDN should be encompassed [2]:

– separation between the control and data planes – a single

software control program manages multiple data planes;

– usage of lightweight switches;

– utilization of the concept of controller – to coordinate the

lightweight switches in a centralized manner.

One of the main purposes of utilizing the SDN technology is the

potential opportunity to foster the effectiveness of available network

resources utilization to meet the rapidly changing requirements of the

environment, e.g., the ad-hoc requirements taking place within business

processes. This is achievable through software-oriented configuration

and management of the network.

Classical switches are based on proprietary software, which fosters

the interoperability problem, which is potentially resolvable by way of

standardization [2]. Moreover, the cost and complexity of network

management and support increase significantly. To this end, the

industry has also embraced the SDN as the strategy to increase the

functionality of the network while reducing the costs and hardware

complexity [4].

Conventional network solutions utilize dedicated devices to

control and monitor the data flow, e.g., Application Specific Integrated

21. SDN programming and simulation of SDN composing, configuring and scaling

168

Circuits (ASICs), designed for performing specific tasks [5]. The wider

the range of rules the packages can be treated, the more expensive these

devices become. The questions about scalability, security and reliability

are still open though. It has been stated that current networks lack the

flexibility to deal with different types of packets with various content

[5]. Promising solution is in programmable manner of network

configuration and control. Such approach allows create the agile

solutions meeting permanently changing requirements in a sufficient

manner. The available computing resources then getting more

effectively allocated and distributed. This prompts the increase of the

economic effect from the utilization of available resources. Thus, the

company, which has adopted the SDN technology, is expected to be

more relevant in modern highly competitive business-environment.

Nevertheless, the concept of programmable network is not the

novelty of SDN – the experimentations have started with Active

Networking in 1990s, and the concept of control plane has been

introduced in 2000s by the IETF ForCES Working Group (WG) [7].

Those concepts haven’t been implemented widely though.

It is stated that SDN concepts are grounded upon the ideas of

telephony networks, where the differentiation between the data and

control planes has also been applied.

Previous attempts to bring in the concepts of programmable

networks are generalized in table 21.1 [10].

21. SDN programming and simulation of SDN composing, configuring and scaling

169

Table 21.1 – Previous technologies encapsulating the concepts of

programmable networks

No. Technology Year Key features

1 DCAN

(Devolved

Control of

ATM

Networks)

1990s Scalable control and management of

ATM networks. The idea – to decouple

control and management functions from

the devices (ATM switches) and assign

them to a dedicated devices.

2 Active

Networking

1990s Is supposed to be a programmable

infrastructure to provide customizable

services, e.g., the concept of user

programmable switches etc.

3 OPENSIG

(Open

Signaling)

1995 The idea – to make ATM, Internet and

mobile networks more open, extensible,

and programmable. It is proposed to

achieve that through the open

programmable interfaces.

4 4D Project 2004 Four planes have been distinguished: a

“decision” plane preserving the global

perception of network, “dissemination”

plane and “discovery” plane devoted to

manage the “data” plane. The later one is

devoted to data transfer.

5 NETCONF 2006 The technology has been proposed by

IETF Network Configuration Working

Group as a protocol for network devices

configuring through corresponding API

(Application Programming Interface).

6 Ethane 2006 A predecessor of OpenFlow protocol.

The concept of controller to manage

network security and policies in a

centralized manner has been utilized.

Like in SDN, the concepts of controller

and lightweight switch have been

distinguished.

21. SDN programming and simulation of SDN composing, configuring and scaling

170

To sum up, grounding on the content of table 21.1, it can be stated

that building blocks of SDN technology have been created previously,

and the predecessors of OpenFlow protocol, centralized controller and

lightweight switch can be seen in NETCONF and Ethane technologies.

21.1.2 SDN infrastructure simulation and emulation.

Network configuration and scaling

Taking into consideration the scale and the complexity of SDN

solutions, to be confident that certain SDN-devoted application is going

to be functioning as supposed, the preliminary simulation needs to be

conducted. It can be done with corresponding tools. One of such tools

is “fs-sdn”, devoted to do the prototyping and evaluation of SDN-

applications at a large scale [23].

Because of the fact that SDN technology is relatively new, it is

commonly relatively difficult to work with such network directly. The

solution can be found in different emulators usage. The emulator

typically is a set of software and hardware means to represent SDN

network within virtual environment. SDN software is based on Linux

platform. Here are some examples of such emulators: Mininet [28],

EstiNet [29], OpenNet [30], ns-3 [31]. Each of these solutions has its

advantages and drawbacks. The Mininet emulator though is being

frequently considered to be an exemplar to be compared to.

Mininet environment is devoted to be the mean for SDN-network

emulation, particularly by creating virtual hosts, switches, controllers

and connections between these components. Named components and

connections between them form the topology of network.

21.1.3 Network orchestration and virtualization. Simulation of

data flows

Certain controller of SDN is typically considered with respect to

corresponding domain of applicability. Thus, to leverage the

advantages of programmable networking on inter-domain level, the

need for a more global concept arises. Here comes the concept

21. SDN programming and simulation of SDN composing, configuring and scaling

171

orchestrator, encompassing the topology of SDN network on inter-

domain level.

It has been stated that there are plenty of different challenges to

provide an orchestration (centralized control) of SDN networks over

multiple domains, e.g., heterogeneous control planes, diverse transport

technologies and communication protocols inside the domain [27]. The

orchestrator is supposed to be supplied with an abstract view of inter-

domain SDN-network, and each domain-specific controller is assumed

to operate with the services of the following types [27]: provisioning

(e.g., connections modification), topology discovery (export topology

information), monitoring of the created connections, path computation.

The controller is supposed to calculate the paths within the

corresponding domain. On contrary, the orchestrator perceives the

global inter-domain view, obtaining the required data from the

aforementioned services of domain-related controllers.

The concept of orchestration is tightly bound with a concept of

virtualization. Network virtualization is devoted to leverage the

opportunity for the bodies to use the own controller and manage the

available virtual resources [25].

To cope with a constant increase of data traffic and the number of

different intercommunicating applications generating this traffic, the

concept of Network Functions Virtualization (NFV) has arisen [9]. Named

concept is devoted to foster the easiness of network management, granting

the required level of QoS-parameters to all the bodies involved in an ad-

hoc manner. To implement such an approach, the Cloud infrastructure is

supposed to be utilized. Moreover, the NFV technology is considered to be

not a replacement, but a complementary one to the SDN technology [9].

To increase network flexibility and programmability, the concepts of

NFV and SDN are expected to be used in conjunction. To leverage the

advantages of both NFV and SDN technologies, the HyperFlex

architecture has been proposed: it provides the virtualization of control

plane, by adding a control-plane isolation function [24]. Moreover, an

SDN/NFV-enabled edge node for IoT services has been proposed [26].

21. SDN programming and simulation of SDN composing, configuring and scaling

172

21.2 Network programming and testing

A widespread and open implementation of SDN controller is known

as ODL (OpenDayLight) built on MDSE (Model-Driven Software

Engineering) principles [11], [12]. It is stated that ODL has already widely

been deployed (over one hundred deployments) around the world, e.g., by

Orange, China Mobile, AT&T, T-Mobile companies etc. [13].

Another well-known solution is known as Beacon [15]. The key

features of this controller implementation are the following: cross-

platform, open source. The advanced study on SDN controllers has been

conducted in [16]. There are plenty of different other SDN/OpenFlow

controllers, e.g., Floodlight [17], Maestro [19], Ryu [22] etc. The

Floodlight controller has been used as the basis for open distributed SDN

operating system – ONOS (Open Network Operating System) [18].

Moreover, Floodlight is stated to be the first implementation of SDN

controller gaining the attention of both research and industry [18].

Nevertheless, the centralized nature of SDN provokes the scalability

and reliability issues. To this end, the distributed SDN controllers have

been proposed [14]. It is stated that centralized SDN controller provokes

SDN network to be vulnerable to disruptions and attacks [20]. Todiminish

this drawback, an open Distributed SDN Control plane (DISCO) for multi-

domain SDN networks has been proposed [20]. The multi-criteria

decision making method – AHP (Analytic Hierarchy Process) – has

been proposed to choose the best suitable SDN controller [21]. It has

been stated that, on the basis of the research conducted, the best

suitable SDN controller has been found to be Ryu [22].

21.2.1 Setting up the configuration of SDN network in Mininet

environment

The Mininet as an emulator provides the means for controller testing.

Mininet environment provides the means to conduct the development,

investigation, testing and software configuring of SDN systems, etc.

Mininet provides in particular the following abilities:

– can be used as testbed for SDN applications development;

– brings to the table the ability of different developers to jointly work

on network topology;

– includes the means of complex topology testing;

21. SDN programming and simulation of SDN composing, configuring and scaling

173

– provides specialized Application Programming Interface (API),

oriented on Python programming language usage;

Comparing to typical approaches to virtualization, Mininet provides

the following advantages:

– easiness of installation;

– quick boot time;

– easiness of system reconfiguration.

As a drawback the difficulties during the work with graphical

environment of Mininet on Windows platform and also the limitation of

network configuration by hardware resources available for virtual machine

can be pointed out [28].

The tasks to be accomplished during the laboratory work:

– Mininet Linux-environment installation on Windows platform by

way of VirtualBox usage;

– virtual machine network interfaces configuration;

– get in touch with basic console commands of Mininet emulator,

particularly to create the networks with different topologies.

The presentation of accomplished tasks has to be conducted by one of

two ways:

– one-by-one;

– after all the tasks have been accomplished.

Obtained results have to be properly represented in the report to be

defended.

To set up SDN network configuration in Mininet environment, the

following commands can be used:

> sudo mn --test pingall --topo single,3

> sudo mn --test pingall --topo linear,4

> sudo mn --topo tree,depth=1,fanout=2 --test pingall

First command creates the network with three hosts. Second

command creates the liner topology network with four hosts. The final one

creates the tree-like topology.

The --topo tree parameter sets tree topology itself. The depth attribute

sets the amount of switches layers (one in our case, represented with single

element (top) of switches tree): on the potential second layer there will be a

pair of switches, on the third – four, and so on. The fanout attribute defines

the number of connections to each switch. In our case fanout=2. This

means that, taking into consideration that depth=1 (there are no other

21. SDN programming and simulation of SDN composing, configuring and scaling

174

layers with switches and there are no other switches at all), both

connections are the direct connections to hosts.

For instance, if we had depth=2, there would be one switch from the

first layer connected to a pair of switches from the second layer, and those

switches from the second layer would be directly connected to a pair of

hosts each. That means that there would be three switches and four hosts in

total.

The --test pingall parameter means that, after the creation of network

with specified topology, each host should ping all other hosts to test

network consistency.

The procedure of such network creation and testing is a pretty time

consuming process, which will take place about 5 sec and will be shown in

console log.

21.2.2 Testing the soundness and consistency of SDN

infrastructure

To conduct the testing of SDN infrastructure, or a controller in

particular, the Mininet environment is typically used.

Mininet network consists of the following components [47]:

– isolated hosts – each host is emulated as a group of user-level

processes; each emulated host has its virtual Ethernet interface;

– emulated links – as each emulated host has its virtual Ethernet

interface, the link is the representation of connection between the Ethernet

interfaces of two hosts;

– emulated switches – can run in the kernel or in user space.

Mininet environment provides plenty of tools to test the soundness

and consistency of SDN infrastructure. To this end, the concepts of

controller switches and nodes are used. Some of named tools are given in

Table 21.2.

As a result of last command execution, the HTML-code of web-

page, obtained by client, will be shown on the console.

21. SDN programming and simulation of SDN composing, configuring and scaling

175

Table 21.2 – The tools (commands) to test the

configuration of SDN network

No. Command Description

1 > nodes See information about all network nodes

(there are should be four nodes in total –

controller (c0), switch (s1) and pair of

hosts (h1, h2)) the nodes command

should be used.

2 > net See the information about nodes'

interfaces.

3 > dump See the information about nodes

configuration.

4 > h1 ifconfig -a See information about network interfaces

of specified node. For instance, for h1

node the given command should be

executed.

5 > s1 ps -a Check the information about processes

executed on nodes. For instance, for s1

node the following command should be

executed.

6 > h1 ping -c 1 h2 Check the connections between two given

hosts.

7 > pingall Check the connections between all pairs

of hosts.

8 > h1 python -m

SimpleHTTPServer

80 &

> h2 wget -O - h1

Launch web server and appropriate client

on hosts. Web server will be launched on

h1 node, client – on h2 node.

To expand the demonstrativeness of resulting solutions and to

simplify the process of network creation, configuration and testing, the

corresponding MiniEdit graphical interface can be used [47].

The snapshot of MiniEdit workspace is given in Fig. 21.1.

21. SDN programming and simulation of SDN composing, configuring and scaling

176

Fig. 21.1 – MiniEdit workspace

The representation of SDN network created in MiniEdi

environment is given in Fig. 21.2.

Fig. 21.2 – SDN network

In Fig. 21.2 the network with one controller (c0), one switch (s1)

and pair of hosts (h1 and h2) is represented.

The configuration details of c0 are given in Fig. 21.3.

21. SDN programming and simulation of SDN composing, configuring and scaling

177

Fig. 21.3 – Controller configuration

The version of OpenFlow protocol to be used is assigned in

network preferences (Fig. 21.4).

Fig. 21.4 – Network preferences

In Fig. 21.4, it is assigned that OpenFlow 1.0 is used.

21. SDN programming and simulation of SDN composing, configuring and scaling

178

21.2.3 Dataflow orchestration. SDN reconfiguration and scaling

Modern data centers usage scenarios are commonly based on

virtual machines and virtual resources utilization in cloud environment.

To improve the resources utilization and data exchange in cloud

environment, different strategies for dynamic balancing of dataflow are

applied. The need for a dataflow orchestration arises here. Diverse

approaches have been proposed to date. One of those is all about the

architectural design of SDN-based orchestrator for dynamic

communication and computing resources chaining [33]. It provides a

coordinated chaining of network and computing data centers’ services,

fostering the increase of allocated resources utilization. Moreover, SDN

and NFV technologies are considered to be the enabling mechanisms to

bring into life the integration of cloud and network resources. With

respect to 5G services usage domain, the ADRENALINE testbed

(placed in Barcelona, Spain) has been utilized to demonstrate the

soundness of SDN orchestration as feasible and scalable solution for

providing the end-to-end connectivity between heterogeneous networks

and cloud systems [34].

With respect to heterogeneous wireless networks (DenseNets), the

requirement to scale and reconfigure the existing network infrastructure

to fulfill the dynamically changing traffic requirements arises, as

energy consumption and signaling overhead increase. In order to

maximize the number of devices involved to be served simultaneously

and, at the same time, to minimize the total energy consumption while

reducing the costs for service providers, the CROWD architecture has

been proposed [35].

21.3 SDN programming and Python scripting

Covering the aspects of SDN programming, the underlying API

needs to be taken into consideration. Nowadays, this API is represented

with OpenFlow specification, based on Ethernet switch with an internal

flow table, has been proposed [3]. To this end, it is essential to discuss

the aspects of OpenFlow protocol first. Not to mention that OpenFlow

protocol has been originally devoted to allow the researchers run the

experiments on heterogeneous switches in a uniform way. An

OpenFlow switch includes one or more tables of packet-handling rules.

21. SDN programming and simulation of SDN composing, configuring and scaling

179

Each particular rule is aimed at certain portion of traffic. Depending on

traffic properties, the package-related actions can either be dropping,

forwarding or flooding. Depending on the rule, imposed by controller

software, the switches can act in a different manner – as a router,

switch, firewall etc. [2].

21.3.1 An in-depth look at SDN-related programming

approaches, principles and concepts

Prior covering the programming peculiarities, to bring to the table

the possibility of OpenFlow-based communication of controller with

switches, the following idea has to be previously exploited: the majority

of modern Ethernet switches and routers utilize the flow tables. The

OpenFlow protocol is intended to provide an interface to program the

heterogeneous switches and routers [3].

An OpenFlow protocol describes the rules of SDN-compatible

switches intercommunication. The protocol is described within an

OpenFlow specification hosted by an Open Networking Foundation

(ONF) [6].

An OpenFlow switch is built from the following constituents [3]:

– Flow Table, coupled with the actions associated with each flow

entry telling the switch the mechanism of flow processing;

– Secure Channel connecting the switch with a remote control

process – the controller;

– OpenFlow Protocol – an open standard for switch-controller

interaction.

Controller-related applications are devoted to run on a network

operating system. The fundamental idea of SDN is to shift the

computations consuming routing tasks from the hardware layer to a

software-based controller [4].

Utilization of the OpenFlow gives the following opportunities [4]:

– ability to manage multiple switches from a single controller;

– capability to analize traffic statistics;

– forwarding information can be updated dynamically.

A brief list of OpenFlow-complient switches is given in table 21.3.

21. SDN programming and simulation of SDN composing, configuring and scaling

180

Table 21.3 – OpenFlow-compliant switches

Company Switch series

HP FlexFabric 12900, FlexFabric 11900, 8200 zl, 5920,

HP FlexFabric 5700, 5500 EI, 5400 zl, 3800, 2920,

12500, 10500, HP FlexFabric 5930, 5900, 5500 HI,

HP 5400R zl2, HP 5130 EI, HP 3500 and 3500 yl;

Cisco Cisco Catalyst 2960X/XR, Nexus 3000, Nexus 9000

etc.;

Dell S4810, S4820T, S5000, S6000, Z9000, Z9500, MXL;

NEC PF5240, PF5820, PF6800, PF5248, PF5340, QX-

S5200, QX-S4100.

Despite of representatives, given in Table 21.3, there are plenty of

other proprietary solutions though.

Since its debut in 2009, an OpenFlow specification has changed

significantly. The latest OpenFlow version is 1.5.1 [6]. The evolution of

OpenFlow releases is given in table 21.4 [8].

Table 21.4 – Evolution of OpenFlow protocol
No Version Distinctive

Feature

Goal

1 1.0-1.1 Multiple table Avoid flow entry explosion.

Group table Enable actions applying to the

groups of flows.

2 1.1-1.2 Multiple

controller

Load balancing, scalability.

OXM Match Extend matching flexibility.

3 1.2-1.3 Table miss entry Provide flexibility.

Meter table Add QoS and DiffServ

capability.

4 1.3-1.4 Bundle Enhance switch synchronization.

Synchronized

table

Enhance table scalability.

5 1.4-1.5 Scheduled bundle Enhance switch synchronization.

Egress Table Enabling processing to be done

in output port.

21. SDN programming and simulation of SDN composing, configuring and scaling

181

The timeline of OpenFlow evolution is given in Fig. 21.5.

Fig. 21.5 – A timeline of OpenFlow evolution

In Fig. 21.5, in the initial OpenFlow 1.0 version (back in 2009)

there has been only a single flow table. This fact stipulated the lack of

flexibility due to the limited matching capabilities. Corresponding

OpenFlow 1.0-compliant switches was able to perform only a single

operation during the packet forwarding. This caused the flow entry

explosion problem [8]. To this end, in the OpenFlow 1.1 version, the

multiple tables and a group table have been introduced, and so forth.

The logical structure of OpenFlow-compliant switch:

– one or more flow tables;

– group table;

– OpenFlow channels to an external controller.

Flow tables and a group table are devoted to lookup and forward

the packets.

Group table consists of the group entries, which can be grouped as

follows [8]:

– general – execute all action buckets in the group;

– selecting – execute one action bucket in the group;

– indirect – execute only the defined action bucket in the group;

– failover – execute first live action bucket.

21. SDN programming and simulation of SDN composing, configuring and scaling

182

The structure of an OpenFlow-compliant switch with respect to

specification is given in Fig. 21.6.

Fig. 21.6 – The structure of OpenFlow-compliant switch

The “general” group provides multicasting – packets are

forwarded to multiple ports.

The “selecting” group is characterized as allowing the load

balancing and link aggregation.

The “indirect” group fosters the scalability aspects by categorizing

the flows into froups to increase the efficiency of default routing in

particular [8].

The “failover” group detects thelive action bucket to execute,

aiming the aspect of high availability.

With respect to an OpenFlow protocol, the adding, updating and

deleting of flow entries is conducted by a controller.

Each flow table in the switch contains a set of flow entries; each

flow entry consists of match fields, counters, and a set of instructions to

apply to matching packets [6]. Matching starts at first flow table and

may proceed to additional flow tables, as shown in Fig. 21.7 [6].

21. SDN programming and simulation of SDN composing, configuring and scaling

183

Fig. 21.7 – Packet processing pipeline

The OpenFlow switch protocol is grounded upon a set of

structures and implemented on the basis of messages transferred

through an OpenFlow channels. All OpenFlow messages are sent in

big-endian format [6].

All OpenFlow-messages begin with a header, given in Table 21.5.

Table 21.5 – The structure of OpenFlow message header

No. Code line

1 struct ofp_header {

2 uint8_t version; /* OFP_VERSION. */

3 uint8_t type; /* One of the OFPT_ constants. */

4 uint16_t length; /* Length including this ofp_header. */

5 uint32_t xid; /* Transaction id associated with this packet. Replies

use the same id as was in the request to facilitate pairing. */

6 };

7 OFP_ASSERT(sizeof(struct ofp_header) == 8);

21. SDN programming and simulation of SDN composing, configuring and scaling

184

In Table 21.5 the length field contains the length of message.

Covering the approaches to SDN-programming, it is essential to

point out first that existing SDN controllers offer programmers low-

level programming interfaces [36]. Taking into consideration the

complexity of such networks, there is a need for highly abstract and

modular solutions, simplifying the programming of complex systems.

To this end, modular approach to SDN programming on the basis of

Pyretic language has been proposed [36]. This language allows write

highly abstract policies for packets routing.

Another approach is to conduct the programming in an algorithmic

manner. To this end, the Maple system has been proposed [37]. It

allows the programmer to manipulate with the behaviors of entire

network in an algorithmic manner. Maple also includes efficient multi-

core scheduler, scaling efficiently to the controllers with multiple cores.

The evolutional aspects of OpenFlow protocol are covered in P4

language [38]. Developers define the following goals to be reached:

– programmers should be able to change the way switches process

the packets once deployed;

– programmers should be able to describe packets processing

functionality independently of underlying hardware;

– switches shouldn’t be bound with any specific network protocol.

There are plenty of different other SDN programming languages,

e.g., Flog (logic programming approach) [39], Procera (a language for

high-level reactive network control) [40] etc.

Moreover, an exhaustive survey on SDN programming languages

has already been conducted [41].

A bit different story is the programming of SDN controllers. A

comparative analysis of open-source OpenFlow-compliant controllers

has been conducted in [16]:

– NOX – multi-threaded C++ based controller [42];

– POX – single-threade Python based controller [43];

– OpenDaylight – written in Java [11];

– Beacon – multi-threaded Java-based controller [44];

– etc.

When considering the aspects of SDN configuration, with

automation in mind, the Python scripting is applicable.

21. SDN programming and simulation of SDN composing, configuring and scaling

185

21.3.2 Setting up SDN configuration by way of python scripting

The forthcoming text corresponds to Python programming in

Mininet environment. To this end, corresponding Mininet Python API

has been created [45]. The interface is based on “topo” namespace,

providing the means to set up or reconfigure network topology.

Moreover, Python scripting can be successfully used to expand the

existing CLI (Command-line Interface) of Mininet. Corresponding

script is given in Table 21.6 [46].

Table 21.6 – Python script

No. Python code

1 def mycmd(self, line):

2 "mycmd is an example command to extend the Mininet CLI"

3 net = self.mn

4 output('mycmd invoked for', net, 'with line', line, '\n')

5 CLI.do_mycmd = mycmd

The commands, adding created mycmd command to Mininet CLI,

are given in Table 21.7.

Table 21.7 – Adding of created command to Mininet CLI

No. Command line code

1 sudo mn --custom mycmd.py -v output

2 mininet> help mycmd

3 output: mycmd is an example command to extend the Mininet CLI

4 mininet> mycmd bar

5 output: mycmd invoked for <mininet.net.Mininet object at

0x7fd7235fb9d8> with line bar

More sophisticated tips on Python scripting are given below.

21.3.3 Sophisticating the Python scripting. Bringing in the

automation

A fragment of Python-script, setting up the performance

parameters of SDN network, is given in Table 21.8.

21. SDN programming and simulation of SDN composing, configuring and scaling

186

Table 21.8 – A sample of configurational Python script

No. Python code

1 #!/usr/bin/python

2 from mininet.topo import Topo

3 from mininet.net import Mininet

4 from mininet.node import CPULimitedHost

5 from mininet.link import TCLink

6 from mininet.util import dumpNodeConnections

7 from mininet.log import setLogLevel

8 class SingleSwitchTopo(Topo):

9 "Single switch connected to n hosts."

10 def build(self, n=2):

11 switch = self.addSwitch('s1')

12 for h in range(n):

13 # Each host gets 50%/n of system CPU

host = self.addHost('h%s' % (h + 1), cpu=.5/n)

14 # 10 Mbps, 5ms delay, 2% loss, 1000 packet queue

self.addLink(host, switch, bw=10, delay='5ms', loss=2,

max_queue_size=1000, use_htb=True)

15 ...

In Table 21.8, the method addHost is used to allocate available

CPU resource to the virtual host. The addLink method is used to set up

a bidirectional link with a specified bandwidth, delay, packets loss and

max queue size characteristics.

21.4 Work related analysis

The section is based on the analysis of work and publications of

fellows from Georgia Institute of Technology and Princeton University

to provide the background on network programmability [2].

To characterize SDN controllers, the work of the fellows from

Stanford University [15], Moscow State University [16] etc., has been

analyzed. To differentiate between the controllers, the results of the

comparative analysis, conducted by the fellows from the Fraunhofer

21. SDN programming and simulation of SDN composing, configuring and scaling

187

Institute for Secure Information Technology (Darmstadt, Germany),

have been utilized [21].

An information on open distributed SDN operating system has

been provided on the basis of work of the fellows from Open

Networking Laboratory [18].

Conclusion and questions

Thus, in given lecture material, the following topics have been

covered:

– peculiarities of SDN switches and controllers functioning and

implementation – the aspects of SDN infrastructure simulation and

emulation; the aspects of network orchestration and virtualization;

– SDN controller programming and testing, e.g., setting up the

configuration of SDN network in Mininet environment;

– SDN programming and Python scripting. The aspects of

automation have been described.

1. Briefly describe current state of the global network.

2. Characterize existing drawbacks of regular network – in terms

of management, reconfiguration and interoperability.

3. Characterize the concept of interoperability. What are the

solutions to achieve the latter?

4. Describe the fundamental principles of Software Defined

Networking.

5. What is the use of differentiation between the control and data

planes.

6. The purpose of OpenFlow protocol usage.

7. The constituents of OpenFlow-enabled switch.

8. Describe the outcomes of OpenFlow utilization.

9. Name a couple of OpenFlow-compliant switches.

10. Characterize the evolution of OpenFlow specification. Point

out the distinctive features of releases.

11. Provide a brief overview of SDN predecessors.

12. Name the key concepts of DCAN technology.

13. Name the key concepts of Active Networking technology.

14. Name the key concepts of OPENSIG technology.

21. SDN programming and simulation of SDN composing, configuring and scaling

188

15. Name the key concepts of 4D Project.

16. The purpose of NETCONF protocol usage.

17. Describe the main idea of Ethane protocol.

18. Describe the peculiarities of OpenDaylight protocol.

19. Give a brief review of popular SDN controllers.

20. Explain the advantages of distributed SDN controllers usage.

21. Explain the drawbacks of the centralized SDN controllers.

22. Describe the concept of Network Function Virtualization

(NFV).

23. Describe the idea of HyperFlex architecture.

24. Describe the advantages the virtualization brings in.

25. Characterize the challenges to providing the orchestration in

SDN environment.

26. Differentiate between the concepts of controller and

orchestrator – in terms of domains.

27. Substantiate the use of “depth” and “fanout” parameters

during the creation of network with tree topology. Characterize the

impact of these parameters values on total number of network nodes.

28. Provide a brief list of SDN emulators.

29. Characterize the use of Mininet emulator.

30. Describe the use of “--topo tree” parameter during network

configuration.

31. Describe the use of “--test pingall” parameter during network

configuration.

32. Describe the use of “depth=1” parameter during network

configuration.

33. Name and briefly characterize the commands for checking the

soundness and consistency of SDN infrastructure.

34. Substantiate the use of “nodes”, “net” and “dump”

commands.

35. Describe the expediency of dataflow orchestration.

36. Name the spheres of dataflow orchestration applicability.

37. Substantiate the expediency of SDN networks reconfiguration

and scaling.

38. Briefly characterize the approaches to SDN programming.

39. Describe the use of Pyretic programming language.

40. Give the idea of Maple system.

21. SDN programming and simulation of SDN composing, configuring and scaling

189

41. Name the evolutional perspectives of SDN-compliant

switches programming.

42. Provide a brief review of the approaches to SDN

programming.

43. Name and briefly characterize a couple of languages for SDN

programming.

44. Briefly characterize open-source OpenFlow-compliant

controllers.

45. Describe the scenarios of Python scripting language

applicability in Mininet environment.

46. Describe the use of MiniEdit graphical interface.

47. Name the components of Mininet network.

References

1. V. Shkarupylo, S. Skrupsky, A. Oliinyk, and T. Kolpakova,
“Development of stratified approach to software defined networks simulation,”
Eastern-European Journal of Enterprise Technologies. Information and
controlling systems, vol. 5 no. 9, P. 67–73, 2017.

2. N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: an
intellectual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44 no. 2, P. 87–98, 2014.

3. N. McKeown et al., “OpenFlow: enabling innovation in campus
networks,” ACM SIGCOMM Computer Communications Review, vol. 38, no.
2, P. 69–74, 2008.

4. A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using
OpenFlow: a survey,” IEEE Communications Surveys & Tutorials, vol. 16, no.
1, 493–512, 2014

5. F. Hu, Q. Hao, and K. Bao, “A survey on Software-Defined Network
and OpenFlow: from concept to implementation,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 4, 2181–2206, 2014.

6. Open Networking Foundation. OpenFlow Switch Specification,
Version 1.5.1, 2015. Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf. [Accessed: 11 Nov.
2018].

7. J. Tourrilhes, P. Sharma, S. Banerjee, and J. Pettit, “SDN and openflow
evolution: A standards perspective,” Computer, vol. 47, no. 11, P. 22–29, Nov.
2014.

8. C. Ching-Hao and Y. Lin, OpenFlow Version Roadmap, 2015.
Available: http://speed.cis.nctu.edu.tw/~ydlin/miscpub/indep_frank.pdf.
[Accessed: 11 Nov. 2018].

21. SDN programming and simulation of SDN composing, configuring and scaling

190

9. J. Costa-Requena et al., “SDN and NFV integration in generalized
mobile network architecture,” in 2015 European Conference on Networks and
Communications (EuCNC), Paris, France, 29 June–2 July 2015, P. 154–158.

10. M. Bindhu and G. Ramesh, “The journey to SDN: a peek into the
history of programmable networks,” International Journal of Computer
Science and Engineering Communications, vol. 2, no. 5, P. 500–506, 2014.

11. J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a Model-Driven SDN Controller architecture,” in 2014 IEEE 15th
International Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM) (WOWMOM), Sydney, Australia, 19 June 2014, P. 1–
6.

12. Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of
OpenDaylight SDN controller,” in 2014 20th IEEE International Conference
on Parallel and Distributed Systems (ICPADS), Hsinchu, Taiwan, 16–19 Dec.
2014, P. 671–676.

13. J. H. Cox et al., “Advancing Software-Defined Networks: a survey,”
IEEE Access, vol. 5, P. 25487–25526, 2017.

14. A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,
“Towards an elastic distributed SDN controller,” in Second ACM SIGCOMM
workshop on Hot topics in software defined networking (HotSDN '13), Hong
Kong, China, 16 August 2013, P. 7–12.

15. D. Erickson, “What is Beacon?,” 2013. Available:
https://openflow.stanford.edu/display/Beacon/Home. [Accessed: 11 Nov.
2018].

16. A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced study of SDN/OpenFlow controllers,” in 9th Central & Eastern
European Software Engineering Conference in Russia, Moscow, Russia, 24–25
October 2013, P. 1–6.

17. Projest Floodlight: Open Source Software for Building Software-
Defined Networks, 2018. Available: http://www.projectfloodlight.org/.
[Accessed: 11 Nov. 2018].

18. P. Berde et al., “ONOS: towards an open, distributed SDN OS,” in
Third workshop on Hot topics in software defined networking (HotSDN
2014), Chicago, Illinois, USA, 22 August 2014, P. 1–6.

19. C. Zheng, “Maestro: Achieving scalability and coordination in
centralizaed network control plane,” 2012. Available:
https://scholarship.rice.edu/handle/1911/70214. [Accessed: 11 Nov. 2018].

20. K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed multi-
domain SDN controllers,” in 2014 IEEE Network Operations and Management
Symposium (NOMS 2014), Krakow, Poland, 5–9 May 2014, P. 1–4.

21. R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-based
comparison and selection of Software Defined Networking (SDN) controllers,”

21. SDN programming and simulation of SDN composing, configuring and scaling

191

in 2014 World Congress on Computer Applications and Information Systems
(WCCAIS 2014), Hammamet, Tunisia, 17–19 Jan. 2014, P. 1–7.

22. M. Monaco, O. Michel, and E. Keller, “Applying operating system
principles to SDN controller design,” in Twelfth ACM Workshop on Hot
Topics in Networks, College Park, Maryland, 21–22 November 2013, P. 1–7.

23. M. Gupta, J. Sommers, and P. Barford, “Fast, accurate simulation for
SDN prototyping,” in The second ACM SIGCOMM workshop on Hot topics
in software defined networking, Hong Kong, China, 16 August 2013, P. 31–
36.

24. A. Blenk, A. Basta, and W. Kellerer, “Hyperflex: an SDN virtualization
architecture with flexible hypervisor function allocation,” in IFIP/IEEE
International Symposium on Integrated Network Management (IM), Ottawa,
ON, Canada, 11–15 May 2015, P. 397–405.

25. A. Basta, A. Blenk, H. B. Hassine, and W. Kellerer, “Towards a
dynamic SDN virtualization layer: control path migration protocol,” in 2015
11th InternationalConference on Network and Service Management (CNSM),
Barcelona, Spain, 9–13 Nov. 2015, P. 354–359.

26. R. Vilalta et al., “End-to-end SDN orchestration of IoT services using
an SDN/NFV-enabled edge node,” in 2016 Optical Fiber Communications
Conference and Exhibition (OFC), Anaheim, CA, USA, 20–24 March 2016, P.
1–3.

27. V. Lopez et al., “Demonstration of SDN orchestration in optical multi-
vendor scenarios,” in 2015 Optical Fiber Communications Conference and
Exhibition (OFC), Los Angeles, CA, USA, 22–26 March 2015, P. 1–3.

28. F. Keti and S. Askar, “Emulation of Software Defined Networks using
Mininet in different simulation environments,” in 2015 6th International
Conference on Intelligent Systems, Modelling and Simulation, Kuala Lumpur,
Malaysia, 9–12 February 2015, P. 205–210.

29. S-Y. Wang, “Comparison of SDN OpenFlow network simulator and
emulators: EstiNet vs. Mininet,” in 2014 IEEE Symposium on Computers and
Communication (ISCC), Funchal, Portugal, 23–26 June 2014, P. 1–6.

30. M-C. Chan et al., “OpenNet: A simulator for software-defined wireless
local area network,” in 2014 IEEE Wireless Communications and Networking
Conference, Istanbul, Turkey, 6–9 April 2014, P. 3332–3336.

31. J. Ivey, H. Yang, C. Zhang, and G. Riley, “Comparing a Scalable SDN
simulation framework built on ns-3 and DCE with existing SDN simulators
and emulators,” in 2016 annual ACM Conference on SIGSIM Principles of
Advanced Discrete Simulation, Banff, Alberta, Canada, 15–18 May 2016,
P. 153–164.

32. A. Wang, Y. Guo, F. Hao, T. V. Lakshman, and S. Chen, “Scotch:
Elastically Scaling up SDN Control-Plane using vSwitch based Overlay,” in
10th ACM International on Conference on emerging Networking Experiments
and Technologies, Sydney, Australia, 2–5 Dec. 2014, P. 403–414.

21. SDN programming and simulation of SDN composing, configuring and scaling

192

33. B. Martini et al., “An SDN orchestrator for resources chaining in Cloud
data centers,” in 2014 European Conference on Networks and
Communications (EuCNC), Bologna, Italy, 23–26 June. 2014, P. 1–5.

34. R. Vilalta, A. Mayoral, R. Casellas, R. Martnez, and R. Muoz,
“Experimental demonstration of distributed multi-tenant cloud/fog and
heterogeneous sdn/nfv orchestration for 5g services,” in 2016 European
Conference on Networks and Communications (EuCNC), Athens, Greece, 27–
30 June 2016, P. 52–56.

35. S. Auroux, M. Draxler, A. Morelli, and V. Mancuso, “Dynamic
network reconfiguration in wireless densenets with the crowd sdn
architecture,” in 2015 European Conference on Networks and
Communications (EuCNC), Paris, France, 29 June–2 July 2015, P. 144–148.

36. J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN programming with Pyretic,” Programming, vol. 38, no. 5, P. 40–47,
2013.

37. A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple:
simplifying SDN programming using algorithmic policies,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, P. 87–98, 2013.

38. P. Bosshart et al., “P4: programming protocol-independent packet
processors,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, P. 87–95, 2014.

39. N. P. Katta, J. Rexford, and D. Walker, “Logic Programming for
Software-Defined Networks,” in First International Workshop on Cross-model
Language Design and Implementation, Copenhagen, Denmark, 9 September
2012, P. 1–3.

40. A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-
level reactive network control,” in The first workshop on Hot topics in
software defined networks (HotSDN '12), ACM, New York, NY, USA, 13
August 2012, P. 43–48.

41. C. Trois, M. D. Del Fabro, L. C. E. de Bona, and M. Martinello, “A
survey on SDN programming languages: toward a taxonomy,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 4, 2687–2712, 2016.

42. N. Gude et al. “NOX: towards an operating system for networks,”
SIGCOMM Computer Communication Review, vol. 38, no. 3, P. 105–110,
2008.

43. L. R. Prete, A. A. Shinoda, C. M. Schweitzer, and R. L. S. de Oliveira,
“Simulation in an SDN network scenario using the POX controller,” in 2014
IEEE Colombian Conference on Communications and Computing
(COLCOM), Bogota, Colombia, 4–6 June 2014, P. 1–6.

44. D. Erickson, “The beacon openflow controller,” in Second ACM
SIGCOMM workshop on Hot topics in software defined networking (HotSDN
'13), ACM, New York, NY, USA, Hong Kong, China, 16 August 2013, P. 13–
18.

21. SDN programming and simulation of SDN composing, configuring and scaling

193

45. Mininet Python API reference manual, 27 Aug. 2018. Available:
http://mininet.org/api/index.html. [Accessed: 11 Nov. 2018].

46. Introduction to Mininet, 26 Sep. 2018. Available:
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#custom.
[Accessed: 11 Nov. 2018].

47. How to use MiniEdit, Mininet’s graphical user interface, 2 April 2015.
Available: http://www.brianlinkletter.com/how-to-use-miniedit-mininets-
graphical-user-interface/. [Accessed: 11 Nov. 2018].

22. Algorithms and applications for the utilization of SDN technologies to IoT

194

22. ALGORITHMS AND APPLICATIONS FOR UTILIZATION

OF SDN TECHNOLOGY TO IOT

DrS., Prof. I. S. Skarga-Bandurova, Ph.D. student M. V. Nesterov,

 PhD student A. Y. Velykzhanin (V. Dahl EUNU)

Contents

Abbreviations .. 195

22.1 Managing the IoT with SDN ... 196

22.1.1 SLA management ... 197

22.1.2 Metrics .. 197

22.2 Smart routing and scheduling .. 198

22.2.1 Data streaming over SDN ... 201

22.2.2 Metrics for evaluation performance of QoS routing algorithms

 ... 202

22.2.3 QoS routing algorithms applicable to large-scale SDN 203

22.2.4 Traffic scheduling algorithms ... 205

22.3 Optimization of SDN Traffic Flow for IoT 206

22.3.1 Algorithms for calculating the optimal position of the SDN-

controller .. 206

22.3.2 Balancing algorithms in IoT-based software defined networks

 ... 210

22.3.3 Algorithms for finding the optimal path in SDN networks 218

22.4 SDN Performance prediction ... 219

22.4.1 Algorithms performance metrics .. 219

22.4.2 An overall approach to detect and diagnose failures in SDN . 220

22.4.3 Case study ... 223

22.5 Work related analysis .. 234

Conclusions and questions... 235

References ... 237

22. Algorithms and applications for the utilization of SDN technologies to IoT

195

Abbreviations

BWP – Band Width Proportion

DORA – Dynamic Online Routing Algorithm

FIBs – Forwarding Information Base

IoT – Internet of things

I/O – input / output

ISP – Internet Service Provider

ML – machine learning

MHA – Minimum Hop Algorithm

MIRA – Minimum Interference Routing Algorithm

NFV – Network Function Virtualization

PPV – Path Potential Values

QoE – Quality of Experience

QoS – Quality of Service

OSPF – Open Shortest Path First

RIP – Routing Information Protocol

ROADM – Reconfigurable Optical Add Drop Multiplexer

SDN – Software Defined Networks

SD – source-destination

SLA – Service Level Agreements

SLO – Service Level Objectives

SPF – Shortest path first

SWP – Shortest Widest Path algorithm

TE – Traffic Engineering

VM – virtual machine

WAN – Wide Area Network

WSP – Widest Shortest Path algorithm

22. Algorithms and applications for the utilization of SDN technologies to IoT

196

SDN technology play a vital role in configuration, reconfiguration,

resource allocation and even the pattern of inter communication in IoT

ecosystem. In [1] Lin L. et al. discussed three properties of SDN:

The service guarantee property that means the system

performance bounds (e.g. delay bound, backlog bound, etc.) are derived

under the given traffic model and server model.

The concatenation property means that a series of servers can be

considered as one single server and represented using the same server

model.

End-to-end property is a parameter that describes the network

performance. High end-to-end latency adversely affects the

performance of time-sensitive applications, such as SDN recovering.

Talking about the algorithms applicable in SDN, they can be used

mainly for the following tasks:

 SLA (Service Level Agreements) management;

 smart routing and optimal virtual machine (VM) placement;

 solving controller placement problem;

 load balancing;

 performance prediction;

 intrusion detection and prevention.

In this chapter, we briefly review the existent algorithms and

approaches to utilizing SDN technology in IoT and take a look at

perspectives on SDN performance prediction using data fusion

technique.

22.1 Managing the IoT with SDN

As can be seen from the previous chapters, SDN can cost-

effectively virtualize IoT networks providing automatic device

reconfiguration and bandwidth allocation to boost performance and

conserve bandwidth. This technology simplifies network management

for even the most complex networks by offering plug-and-play device

setup and deployment, ensures security and improved access control

with the benefit of greater traffic transparency at the network’s edge.

According to major service and network providers, 70% of

deployed networks will rely on cloud infrastructures and multi-domain

22. Algorithms and applications for the utilization of SDN technologies to IoT

197

SDN controllers as far back as in 2020 [2]. This is provided by the

following features:

(1) much faster deployment (from months down to minutes);

(2) continuous provisioning in line with up and downscaling;

(3) end-to-end orchestration;

(4) service assurance for fault and performance management.

22.1.1 SLA management

SLA agreement generally comprises parameters describing the

service functional and non-functional properties such as the minimum

acceptable QoS values (referred to as SLOs). In this context, SLO can

be seen as a range of values (i.e. lower or upper thresholds) that

guarantee a certain level of quality with respect to a specific service and

to a specific set of variables (or aggregates, i.e. mean value or

percentiles).

SLA management can be classified into three broad categories,

(1) resource monitoring;

(2) SLA management including SLA violation prediction;

(3) mapping from low level monitored metrics to SLA;

(4) mapping of SLA between SaaS, PaaS, IaaS cloud layers.

22.1.2 Metrics

As it mentioned in [3], SLA management for efficient joint use of

SDN and clouds has not been developed yet and new approaches to

meet these new SLA and SLO management are in demand. To do it the

following metrics could be used:

 Service Availability ratio;

 Response time ratio;

 Capacity, downlink bandwidth ratio.

In [3], each SLO is defined as a multi-step function expressed as a

combination of at least two metrics and thresholds, for example,

response time with respect to the workload. In this connection, metrics

are defined as average over a certain period of time (see Fig. 22.1).

22. Algorithms and applications for the utilization of SDN technologies to IoT

198

100
90
80
70
60
50
40
30
20
10

0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Response Time, ms

W
o

rk
 lo

ad
, %

Fig. 22.1 – Example of an SLO

As shown in Fig. 22.1, for each workload interval, a specific

threshold for the response time is set up. When the workload is between

0 and 20% the minimum response time is 20 ms; if the workload is

between 20% and 70% then the threshold is 40 ms, etc.

22.2 Smart routing and scheduling

Distributed cloud systems typically consist of distributed,

interconnected data centers that use virtualization technology to provide

computing and storage services for each request on demand. As soon as

the request arrives, several virtual machines (VMs) are created in one

or more server nodes (which can be located in the same or different

data centers) to satisfy the request. However, server-side crashes caused

by hardware crashes, such as hard disk or memory module crashes, as

well as program problems, such as program errors or configuration

errors, may result in the loss of virtual machines hosted on it, and thus

the entire service can not be guaranteed. An effective way to overcome

this problem is to create and place more replicas of virtual machines,

but this approach must also take into account the availability of nodes.

For example, if all virtual machines, along with their replicas, are

22. Algorithms and applications for the utilization of SDN technologies to IoT

199

hosted at sites with a high probability of failure, then proper servicing

can not be guaranteed. Therefore, the availability of a virtual machine

placement, a value from 0 to 1, is important and relates to the

probability that at least one set of all requested virtual machine clients

is in working order throughout the requested service life. Additionally,

if two or more virtual machines are hosted on different hosts, we must

also ensure a reliable connection between these virtual machines. In

fact, one unprotected path fails if one of its related links fails. To

improve the reliability of data transfer from the source to your

destination, you need to protect the path (or survivability).

Figure 22.2 shows the different levels of routing in the network. IP

channels are routed through the ROADM level, while Multi-Protocol

Label Switching - Traffic Engineering (MPLS-TE) tunnels that carry

end-to-end traffic are routed through the IP layer.

Fig. 22.2 – Different Layers of Routing (adapted from [4])

If there are N finite points of traffic and K classes of QoS, then in

the traffic matrix there are T elements

T = K∙N (N-1).

22. Algorithms and applications for the utilization of SDN technologies to IoT

200

For example, when K = 2 and N = 100, then T = 19800. It is

assumed also that each element of the traffic matrix is routed over the

packet network as a TE tunnel. As a rule, the traffic to the TE-tunnel in

a large ISP network has complex nonlinear fluctuations and the

seasonal frequency at different time scales that reflect the use of the

network by users. Traffic in most active tunnels contains strong

daytime hesitations, less noticeable weekly fluctuations (reflecting

different patterns of use on weekends), as well as sharp jumps that

correspond to dynamically moving network traffic between tunnels

after changing IP topology (sharp jumps can not be directly predicted

by the prediction model, but the model is configurable to a new level of

data immediately at a later point in time after observing the jump. As

far as the changes in the long-term topology of the IP and the links

routing changes are known then we can pass this information to the

forecasting model. An example of the total volume of traffic and

volume of traffic in a particular TE-tunnel is shown in units of the

overall bandwidth in Fig. 22.3.

Fig. 22.3 – The tunnel traffic volume across the entire network (top)

and an individual TE tunnel (bottom) using generic bandwidth units [4].

This knowledge enables to utilize different regression models to

optimize many different failure scenarios and joint global optimization

22. Algorithms and applications for the utilization of SDN technologies to IoT

201

of IP layers and perform capacity planning. The knowledge of near-

term traffic pattern can significantly improve the feasibility and

efficiency of offering SDN service.

22.2.1 Data streaming over SDN

The current trend of introducing complex software is the division

of the system into several independent components or micro-services.

Because components communicate through well-defined APIs, each of

them can be developed separately and reused between services. Parts of

the programs can be scaled separately. In IoT, software often takes the

form of a circuit, where each component processes the sensor data and

transfers it to processing by the next component of the circuit.

Movement can be moved in both directions of the chain.

The amount of data produced by an IoT device is significantly

different: some types of sensor devices wake up periodically (for

example, once per hour) to report the measurement value, while other

types of devices, such as video devices or complex machines,

constantly generate significant amounts of data. Typically, there is a

high degree of redundancy in the sensor data, for example, a multiple

measurement value with low variation. Therefore, it makes sense to

filter and compress data at the source before transmitting it on the

uplink from the gateway to the cloud. This can be implemented as a

separate data reduction component, the implementation of which is

very specific to the specific use case. Moreover, many IoT applications

include control loops: data produced by sensors is analyzed or supplied

to a control process that runs commands about the commands sent to

the device. For this type of closed loop control, low and estimated

latency is crucial.

There are several proposals for implementing new routing

algorithms for video streaming applications running over SDN. The

purpose of developing new routing algorithms is to increase the quality

of experience (QoE), a measure of client experience with a video

streaming application. Commonly used QoE metrics are the received

bitrate, percentage of lost packets, outage duration, number of quality

changes and startup delay.

Another important component of networks is the overall

performance of the connection, which is called Quality of Service

22. Algorithms and applications for the utilization of SDN technologies to IoT

202

(QoS). QoS contains requirements for all major aspects of data

transmission, such as response time, shudder, interrupts, etc.

22.2.2 Metrics for evaluation performance of QoS routing

algorithms

To date, there are two basic QoS architectures available, they are

IntServ and DiffServ [5]. However, none of them is implemented

globally due to their inherent weaknesses. IntServ provides end-to-end

QoS guarantees at connection level using resource backup methods.

QoS requests are sent in the shortest path that is defined by traditional

routing protocols. If this path is overloaded, the request will be rejected,

even if some other way to the same destination has sufficient

bandwidth. Architecture DiffServ uses a different approach. Instead of

reserving resources for each traffic stream, DiffServ indicates the

packets on the network entry and classifies them for the finite number

of traffic classes. Although this solution is more scalable than IntServ,

it provides only relative performance assurances. DiffServ also does not

include new routing mechanisms. Multiprotocol Switching Labels

(MPLS) provides a partial solution with the possibility of TE. However,

TE mechanisms are not implemented in the networks of modern service

providers because of the inflexibility of basic protocols that do not

allow reconfiguring the network in real-time [6].

QoS routing algorithms can be analyzed in terms of their

suitability for establishing traffic tunnels in large-scale backbone SDN /

OpenFlow networks [7]. Besides providing the required QoS level to

service providers who rent resources of the backbone network, it is

desirable that algorithm maximizes utilization of the network resources,

since that is the main interest of the infrastructure provider. Regarding

this, there are several metrics to evaluate algorithms performance:

(1) Bandwidth Rejection Ratio (BRR);

(2) Average Route Length (ARL);

(3) Delay;

(4) Loss Ratio.

Most algorithms proposed in literature are dominantly focused on

the first metrics and is a bandwidth guarantees. Second metrics is

applicable because in WAN (Wide Area Networks) longer paths

usually entail higher delay.

22. Algorithms and applications for the utilization of SDN technologies to IoT

203

Routing problem definition. Let us assume that there is a network

topology with n nodes and m links. Each link has its own capacity and

residual bandwidth at a given time.

The routing task, which requires a path with a certain bandwidth

from the input node to the output node, is processed by the routing

algorithm. The algorithm consistently handles requirements with the

assumption that the network conditions are available, such as topology,

channel bandwidth, and input / output (I/O) pair. However, routing

requirements are not known in prior.

The task of the TE routing algorithm is to send as many requests as

possible, provided that each set route stores several bandwidth

resources for a certain period of time (i.e. the bandwidth for each route

is guaranteed). Since the I/O pair has integral commodity flows, the TE

routing problem is NP-hard.

In general, there are two categories of routing algorithms, namely

proactive algorithms and reactive algorithms. Most of reactive routing

algorithms first calculate the weight of the channels based on the

network states, and then utilize the shortest path algorithms (e.g.,

Dijkstra, SPF, Bellman-Ford, etc.) to select the least weighed route. As

a side note, Dijkstra algorithm is used to compute a weight optimized

feasible path for QoS request.

22.2.3 QoS routing algorithms applicable to large-scale SDN

The most widely used bandwidth-constrained routing algorithm is

Minimum Hop Algorithm (MHA) [8]. MHA grounded on static

selection scheme that maintains information about available bandwidth

on each of the links, and only those that have enough resources to

satisfy user's requirement are taken into account for routing. This

means that for each I/O pair, one and the same shortest path is selected,

until at least one of its channels can not meet the requirements of the

bandwidth. Although MHA is very simple, it could quickly create a

bottleneck for future requests, leading to poor utilization of network

resources.

Widest Shortest Path (WSP) algorithm is a modified version of

MHA, as it attempts to load-balance the network traffic. In this way the

algorithm tries to make tradeoff between two conflicting requirements:

load balancing and resource consumption. WSP has the same

22. Algorithms and applications for the utilization of SDN technologies to IoT

204

drawbacks as MHA since the path selection is performed among the

shortest feasible paths which are used until saturation before switching

to other feasible paths.

Shortest Widest Path (SWP) algorithm is a further improvement of

the previous ones. In this algorithm, the first criterion is taken to be the

path with the maximum residual bandwidth and if more than one path is

selected then the one with the smallest number of hops is chosen.

 These three algorithms use information about network topology

and available bandwidth, but do not use information about source-

destination (SD) node pairs to find a feasible route. To minimize

"interference" on routes that may be critical to future demands in SDN,

the following algorithms that do not use a priori knowledge of traffic

scheme can be useful.

Minimum Interference Routing (MIRA) algorithm uses knowledge

of the I/O label switching router, which are potential source-destination

pairs of traffic. MIRA makes an on-demand routing decision based on

the level of “interference” it will have upon a future request from

another receiving source. This level of interference is used as the line

weight to calculate the shortest path for new demand. The novelty of

this algorithm leads to less selected critical references to other source-

destination pairs. However, it has two major drawbacks. First, it is the

difficulty to calculate the maximum flow between any source-

destination pairs and the weight of all links.

Dynamic Online Routing (DORA) algorithm works offline and

online. In an offline phase, an array of Path Potential Values (PPV) is

calculated for each SD pair. The elements of the PPV array correspond

to the network connection and reflect their importance for other SD

pairs. First, all PPV values are set to zero. Then, for the corresponding

SD pair, the set of shortest non-overlapping paths is calculated. The

values of PPV links included in these paths are reduced by 1. Finally,

each link is checked for the non-overlapping paths of other SD pairs. If

it is found there, its PPV value is increased by 1. PPV values are

determined for each SD pair individually, but these calculations are

performed only when the network is initialized or with some change in

the topology. At the PPV stage, the bandwidth of each channel is

combined to form the weight of the channel. The effect of the residual

bandwidth is controlled by the BWP parameter (Band Width

Proportion):

22. Algorithms and applications for the utilization of SDN technologies to IoT

205

1

1 , 0 1
_

weight BWP PPV BWP BWP
residual bandwidth

22.2.4 Traffic scheduling algorithms

Traffic scheduling in traditional network is generally based on IP

and MPLS-TE network, using the SPF algorithm (such as OSPF,

ECMP) to finish the route calculation. In physical networks routing

problem can be solved by using several algorithms such as Open

Shortest Path First (OSPF), or Routing Information Protocol (RIP) and

nowadays, it is not an actual challenge. However, when SDN appeared,

the way of understanding the network operation radically changed.

As the traditional traffic engineering can not adjust the traffic

allocation dynamically, the traffic scheduling has the difficulty to

maximize the network traffic while the balance over paths is achieved.

Most of the traffic engineering equilibrium models can be

classified into two categories [9]:

(1) Minimize the maximum link utilization;

(2) Minimize the link cost.

The first category is introduced by Kennington et al. [10] where

the following objective function is used to minimize the maximum link

utilization:

 max ,e
e E

BU

 (22.1)

where BU denotes a bandwidth utilization of link e.

The model that minimizes the link cost is described in [11] and can

be denoted by the cost function :

 min e

e E

BU

 , (22.2)

22. Algorithms and applications for the utilization of SDN technologies to IoT

206

where is a function of the link utilization. The objective

function is defined as a piecewise linear convex function .

The literature [12] indicated that traffic scheduling based on SDN

has three main directions, they are the traffic scheduling of data layer,

the traffic scheduling of control layer and the traffic scheduling

virtualization. Currently, the issue of routing in SDN should be again

considered in order to know who these networks work.

22.3 Optimization of SDN Traffic Flow for IoT

22.3.1 Algorithms for calculating the optimal position of the

SDN-controller

In general case it is assumed that for a good controller placement it

is necessary to minimize the latencies between nodes and controllers in

the network. However, looking only at delays is not sufficient. A

controller placement should also fulfill certain resilience constraints

[13].

The Controller Placement Problem formulation. Suppose there are

M SDN-compliant switches connected to form a network representing

one or more logical / physical domains. For simplicity of presentation,

we assume homogeneity among switches. Controllers are transmitted

by switches when they receive new threads so that they can update their

forwarding rules or the Forwarding Information Base (FIB). Controllers

should regularly update FIB switches and provide QoS on networks.

Let M switches receive new streams, randomly generating an

uneven network load scenario at any time T. Assuming that the switch i

receives the li number of new flows and the average load that can be

processed by one controller is equal to C, the minimum number of

required controllers is [14]:

1 .

M

ii
l

k
C

 (22.3)

The above argument is justified if the load on the

network/switches is known a priori, which in practice is not possible. In

addition, with dynamic load changes, the value of k also changes

22. Algorithms and applications for the utilization of SDN technologies to IoT

207

dynamically. The goal is to get the optimal value k for dynamically and

optimally displaying k controllers (location) on the M switchers SDN.

To solve this problem, we assume that each controller can operate

in master1 mode, in slave mode or in both modes (master for one set of

switches and/or slave for another set of switches). In subordinate mode,

the controller is able to listen to the switching of switches without any

action. Both the master and subordinate controllers can communicate

with each other using the communication protocol between the SDN.

As the network load increases, one or more new controllers can be

added to handle the load, which leads to a change in the placement of

existing controllers and the change of the base state to the subordinate

or vice versa. However, if the network load decreases, one active

(master/subordinate) controller can be deleted, which leads to a change

in the placement of the remaining controllers and the change of state

from the main to the subordinate and vice versa. This process of

adding/removing a controller is fixed by the following optimization

problem:

 min , ,f k c (22.4)

. ., , ,i th is t I

 , i th iU U U I

where f denotes a nonlinear function of the number of controllers k

and cost c associated with each controller. Note that k and c are

interrelated, and c may be a k function. Ui is the usage index (CPU,

memory, or stream), Δi is the delay (processing combination and delay

in the path) associated with the i-th controller at time T, and I is the set

of all active controllers who work online. Limitations of delay and use

are such that the delay associated with the controller should be less than

the predefined limit value (to support QoS), and use must be within the

minimum and maximum thresholds (Uα and Uth); the minimum

threshold for cost reduction and the maximum threshold to meet the

sudden increase in network traffic, respectively.

Equation (22.4) represents a global optimization problem in which

the purpose and the constraints contradict each other.

22. Algorithms and applications for the utilization of SDN technologies to IoT

208

The solution of equation (22.4) should be such that the number of

controllers used (k) is unique and optimal. In addition, the display of

switches on controllers should provide requirements for delay and use.

However, when changing the load, obtaining a unique k is impossible,

which can be used for all load conditions. Moreover, a centralized

solution is not recommended due to problems of scalability,

controllability and fault-tolerance. Therefore, it is necessary to solve

following equation using distributed individual optimization as follows

min ,ic (22.5)

. ., i ths t

 i thU U U

where ci is the value associated with the i-th controller.

Placement metrics

The following metrics can be used to evaluate the position of the

SDN-controller [14]:

(1) Average-case Latency.

For a network graph G(V, E) where edge weights represent

propagation latencies, where d(v, s) is the shortest path from node v V

to s V , and the number of nodes n = |V|, the average propagation

latency for a placement of controllers S is:

1
 min ,avg

s S
v V

L S d v s
n

 (22.6)

In the corresponding optimization problem, the goal is to find the

placement S from the set of all possible controller placements S,

such that | S | = k and ()avgL S is minimum. For an overview of the

approaches to solving this problem, along with extensions, refer to [15].

(2) Worst-case latency.

An alternative metric is worst-case latency, defined as the

maximum node-to-controller propagation delay:

22. Algorithms and applications for the utilization of SDN technologies to IoT

209

 max min ,wc
s Sv V

L S d v s

 (22.7)

where again we seek the minimum S S. The related

optimization problem here is finding minimum k-center [16].

(3) Latency bound.

Instead of minimizing the average or worst case, we could place

controllers to maximize the number of nodes within a delay.

The general version of this problem of arbitrary overlapping sets is

called maximal coverage [17]. An instance of this problem includes the

number k and set of sets S = S1, S2, ..., Sm, where 1 2 , , , i nS v v v .

The objective is to find a subset S S of sets, such that
i

iS S
S

is maximized and S k . Each set iS comprises all nodes within a

latency bound from a single node.

SDN-controller placement algorithms

K-medoids algorithm. This is a clustering algorithm which chose

the center first and take an approach of minimizing the sum of

dissimilarity between the points and marked to be in a cluster and a data

point chosen to be the center of that cluster.

Steps:

 initial gauss for center 1C kC

 Repeat:

1. Minimize over C: for each i=1…n find the cluster center KC

closest to iP

2. Minimize over iC kC : for each k=1…K

3. Stop until inter-cluster variation doesn’t change.

K-center algorithm. This is another clustering algorithm. The goal

of this algorithm is to select K points from the given data points which

minimizes the maximum distance from the controller to the switches.

1. Require: (N×N) Shortest Path Matrix. and Required delay (ґ)

22. Algorithms and applications for the utilization of SDN technologies to IoT

210

2. k Select randomly a node

3. While there are nodes not belonging to the cluster do

4. kCluster Find the nodes v that satisfy d(k;v)≤ ґ, where v

 Cluster

5. For each node v kcluster do:

6. Evaluate max(min(d(v, kcluster)))

7. End for

8. Choose the node as controller s which minimizes the d(v,s)

9. Find the furthest node k from Cluster

10. End while

Pareto-Optimal Controller Placement (POCO) algorithm. POCO

is proposed in [13] and is a failure tolerant controller placement

approach. POCO does not provide recommendations for a specific SDN

controller placement, but returns a set of placements that are optimal

for Pareto, which allows network operators to choose the location that

best suits their needs. In particular, they can also decide how much

controller failure should be covered by an elastic placement.

22.3.2 Balancing algorithms in IoT-based software defined

networks

As the topology SDN grows, it is necessary to manage an

increasing number of switches and handle more and more threads. As

stated in the OpenFlow standard, current solutions are based on the

message packet header (or first packet) of each new flow of revenue to

a centralized controller that reactively sets forwarding rules on

switches. If there is only one controller in the control plane, it can

become a bottleneck for the SDN, which will significantly degrade user

interaction. To reduce the load on the controller, some researchers

suggest using the default paths for all threads. When the thread enters

the switch, the switch can find the appropriate rule for this thread and

direct the stream directly.

However, in many practical applications, network operators must

specify detailed (or for each thread) policies that determine how base

switches send, reject, and measure traffic. Because substitution rules

provide only rough flow management, deploying the default path for all

22. Algorithms and applications for the utilization of SDN technologies to IoT

211

threads is not attractive. Therefore, in order to avoid such overload /

failure of one controller, the control plane is usually implemented as a

distributed system with a cluster of controllers, also called a distributed

control plane.

One of the key issues in the distributed control plane is the

potential load imbalance of the controller caused by the traffic

dynamics. In particular, the controller may be overloaded if a large

number of threads are fed to switches that are connected to this

controller while another controller may not be used sufficiently. In

practical networks, the traffic dynamics will occur if some applications

generate streams from certain parts of the network, or some switches

serve a large number of threads compared to other switches. To do this,

eliminate the load imbalance of the controller is necessary.

To overcome this problem, one way is to allow each switch to

dynamically change its connected controller from the source to the

target, also called switching migration.

Formulation of the balancing problem

As SDNs provide the centralized control capability with the global

view of network status, we address the load-balancing of control traffic

to minimize the link transmission delay via an optimization approach.

Specifically, the traffic assignment matrix
, ij i V j J

x

 x , where ijx

denotes the amount of control traffic that the ith switch contributes to

the jth link, is obtained with respect to minimizing the average network

delay over the network.

To achieve load balancing, multi-path routing is adopted, where

given iP as a set of available paths for the ith switch and i V, this

switch can forward the control messages to the controller via iP

available paths. To characterize possible multi-path routings of control

flows, for the flow from the ith switch, we define a topology matrix iT

of size J × iP as follows:

22. Algorithms and applications for the utilization of SDN technologies to IoT

212

 th th1, if the j link lies on the p path;
,

0, otherwise.
i j p

T (22.8)

The matrix iT maps the traffic from paths to links and should

always be full column-rank to avoid redundant paths. Its left-inverse

matrix
1

1 2, , ,i i i i J
t t t

T exists and has the size iP × J , where

 ijt is the column vector that maps the jth link to all possible paths of the

ith switch’s flow. ijt is obtained by multiplying
1 i

T with the jth

standard basis je , i.e.
1 ij i jt eT . While each switch i brings a control

flow with the mean value σi , the switch
*i , where the controller is

directly attached, can send its flow to controller without going through

the network (i.e., *i j
x = 0, j J). We set up the equalities for the

control flow conservation of switches as

 1 *

1
1

, , , : \
T

i i ii J
x x i V V i

T , where
T
 and

1
 denote

the transpose and 1-norm of vector, respectively. Let
1

1 ij i jd eT , such

equalities can be further simplified as

 ,ij ij i

j J

d x i V

 (22.9)

which is the flow conservation constraint, implying that the control

flow initiated by each switch is split into multiple outgoing flows on the

selected transmission links. Furthermore, with the aid of Little’s law

[7], the average network delay D over the network for the control

messages is obtained as

 j

 λ1

 λ μ λ

ij ji V

j Ji j ij ji V j J i V

x
D

x

 . (22.10)

22. Algorithms and applications for the utilization of SDN technologies to IoT

213

 In particular, for link j J , new packets arrive with rate

 λij j

i V

x

 and stay an average time of j1/ μ λij j

i V

x

 .

Summing queue backlogs over all links, the average network delay is

thus yielded, as the total external arrivals of control and data traffic into

the network are λi j

j Ji V

 . In addition, to balance the traffic loads

among all links, every link should have finite transmission delay. From

the formulation in (3), such finite link delay conditions are equivalent

to

 λ ,ij j j

i V

x j J

 (22.11)

which ensure the incoming traffic rates are less than the link

service rates and link delays remain nonnegative. Therefore, with the

above accomplishments, we define the Control Traffic Load-Balancing

Problem as follows.

Given a SDN modeled by G = (V, J) with the controller location
*i V , control traffic arrival rates i , a set of topology matrices iT ,

i V, data traffic rates λ j , and link serving rates j , j J, the

load-balancing optimization problem to be solved by the controller is

 *
min

ij

i V V i
D x

j J

 subject to (22.9) and (22.11).

Load balance strategies and algorithms

Many researches have been proposed on load balance in traditional

multipath network. There are two load balance strategies have been

widely used in multipath network at present: (1) Equal-Cost MultiPath

(ECMP) and (2) Valiant Load Balance (VLB). The core idea of ECMP

is to evenly distribute data-flow to next-hop switches, and VLB

22. Algorithms and applications for the utilization of SDN technologies to IoT

214

distributes traffic among all available paths and randomly picks the

next-hop switch. ECMP is a simple routing scheme with load

balancing. Instead of having one "better" way (measured in some

metric, for example, by the number of hops) to a specific destination,

ECMP enables to use several "best" paths where possible. This

provides some form of load distribution, since we can, if necessary,

distribute traffic in all ways.

These two strategies both use fixed methods and cannot pick

transmission path adaptively to the path load condition.

A dynamic load balance algorithm, known as DLB, has been

proposed in [18]. The DLB algorithm simply applies greedy selection

strategy to pick next-hop link which transmits least data load. Although

these algorithm implements load balance on multipath SDN, this

routing strategy is only decided by link load of every next-hop without

combining the superiority of global network view in SDN. Hence, this

routing strategy may not find the best transmission path in global view

so that may not achieve the best load balance effect.

Hash-Based ECMP Flow Forwarding [19]: a hash-based Equal-

Cost Multi-Path (ECMP) [20] is a load balancing scheme for

distributing flows to the available paths using stream hashing methods.

The main limitation of ECMP is that two or more large long-lived

streams can collide in their hash and share the same output port, thereby

creating a bottleneck in the network. This static mapping of flows in the

path is not associated with the current use of the network, nor with the

size of the flow, which leads to collisions that can overload the switch

buffers and degrade the overall use of the network. To avoid the

constraints of ECMP, a significant number of large (ivory) streams can

be detected on edge switches or end hosts [21] and then the central

controller can calculate the appropriate paths for them, while small

(mouse) streams are forwarded using ECMP routing on the switches.

However, such a solution can cause high bandwidth and processing

overhead on switches or hosts.

Wildcard Rule Flow Forwarding: OF switches use flowmatch

wildcards to aggregate traffic flows [20]. OF is a great concept that

simplifies network and traffic management by providing switch level

control at the switch level and providing a global view of the network.

However, centralized management and a global view of all flows

require the controller to configure all flows for a critical path

22. Algorithms and applications for the utilization of SDN technologies to IoT

215

throughout the network, which is not scalable enough and leads to both

bottlenecks and delays. To reduce the number of interactions between

the controller and the switches, the SDN TE approaches implement OF

substitution rules on the switches, and the switches can make local

routing decisions that process mouse flows to avoid controller

involvement, while the controller maintains control over only elephant

target streams, especially for flows important to quality of service

(QoS). In another approach, authoritative switches are used to process

all data packets without involving a controller in order to reduce the

control costs on the control plane.

VLB algorithm is a randomized load distribution or two-phase

routing algorithm. This is decentralized, so each node makes local

decisions. It also makes the scheme scalable. VLB does not depend on

the traffic matrix, because randomness erases the traffic pattern, and

different traffic matrices can lead to the same load on the channels.

Consider a network of N nodes, each with capacity r, i.e., a node

can initiate traffic at the maximum rate of r, and can receive traffic at

the same maximum rate. We assume that the network traffic satisfies

such node aggregate constraint, because otherwise there is no way to

avoid congestion. A logical link of capacity 2r/N is established between

every pair of nodes over the physical links, as shown in Figure 22.4.

N 3

1 2

... 4

2r/N

r r

r r

rr

Fig.22.4 – VLB in a network of N identical nodes each having

capacity r.

22. Algorithms and applications for the utilization of SDN technologies to IoT

216

We use the convention that a flow in the network is defined by the

source node and the destination node, unless further specified.

Every flow entering the network is equally split across N two-hop

paths between input and output nodes, i.e., a packet is forwarded twice

in the network: In the first hop, an input node uniformly distributes

each of its incoming flows to all the N nodes, regardless of a full mesh

of logical links of capacity 2r/N connect the nodes the destinations. In

the second hop, all packets are sent to the final destinations by the

intermediate nodes. Load-balancing can be done packet-by-packet, or

flow-byflow at the application flow level. The splitting of traffic can be

random (e.g., to a randomly picked intermediate node) or deterministic

(e.g., round-robin).

Assume we can achieve perfect load-balancing, i.e., can split

traffic at the exact proportions we desire, then each node receives

exactly 1/N of every flow after first-hop routing. This means, all the N

nodes equally share the burden of forwarding traffic as the intermediate

node. When the intermediate node happens to be the input or output

node, the flow actually traverses one hop (the direct link between input

and output) in the network. Hence, 2/N of every flow traverses the

corresponding one-hop path.

Such uniform load-balancing can guarantee to support all traffic

matrices in this network. Since the incoming traffic rate to each node is

at most r, and the traffic is evenly load-balanced to N nodes, the actual

traffic on each link due to the first-hop routing is at most r/N. The

second-hop routing is the dual of the first-hop routing. Since each node

can receive traffic at a maximum rate of r and receives 1/N of the

traffic from every node, the actual traffic on each link due to the

second-hop routing is also at most r/N. Therefore, a full-mesh network

where each link has capacity 2r/N is sufficient to support all traffic

matrices in a network of N nodes of capacity r.

This is perhaps a surprising result – a network where any two

nodes are connected with a link of capacity 2r/N can support traffic

matrices where a node can send traffic to another node at rate r. It

shows the power of load-balancing. In VLB, each flow is carried by N

paths, and each link carries a fraction of many flows; therefore any

large flow is averaged out by other small flows. In a static full-mesh

network, if all the traffic were to be sent through direct paths, we would

22. Algorithms and applications for the utilization of SDN technologies to IoT

217

need a full-mesh network of link capacity r to support all possible

traffic matrices; therefore, load-balancing is N/2 times more efficient

than direct routing.

 Rounding-Based Multi-Area Routing (RDMAR) algorithm is used

for link/controller load balancing is an SDN. To solve LBR-C problem,

the algorithm constructs a linear program as its relaxation. More

specifically, LBR-LC assumes that the traffic of each flow should be

forwarded through only one path. By relaxing this assumption, the

traffic of each flow f is permitted to be forwarded through a set of

feasible paths .fP We formulate the following program 1LP :

2

2

,

,

,

()

() ()

()

1

[0,1] ,

j f

j f l

j f l

f

p

f j jf Г e p p P

p

f jl jf Г p P p E

p

f kl jf Г p P p E

p

fp P

p

f f

y s f e E

y s f t l A

y t l A

y f Г

y f Г p P

(22.12)

The main difference of variable
p

fy with Eq. (22.12) is fractional

instead of integral. Since 1LP is a linear program, it can be solved in

polynomial time with a linear program solver. We assume that the

optimal solution is denoted by j . Using randomized rounding

method, we obtain an integral solution ŷ . More specifically, ˆ p

fy is set

as 1 with the probability
p

fy while satisfying 1,
f

p

f

p P

y f Г

 .By

this way, we have determined the path for flow f.

The RDMAR algorithm is formally described as follows.

Algorithm RDMAR on Controller ju

1: Step 1: Solving the relaxed LBR-C Problem

2: Construct a linear program in Eq. (22.12) as relaxed LBR-LC

22. Algorithms and applications for the utilization of SDN technologies to IoT

218

3: Obtain the optimal solution
p

fy

4: Step 2: Flow route Selection for Load Balancing

5: Drive an integer solution ˆ p

fy for each flow by randomized

rounding

6: for each flow f Γ do

7: for each feasible path p fP do

8: if ˆ 1p

fy then

9: Appoint a feasible path p for flow f

22.3.3 Algorithms for finding the optimal path in SDN networks

In networking systems, data can be disseminated (from source to

destination) either through a single or multi path(s). In single path, data

should be routed from origin to destination through a unique path,

which has to meet some of predefined constraints. While the other

solution for traffic distribution is by routing the traffic through a

number of existing paths between the origin and destination. According

to the literature, for each of these routing strategies there are some

different methods with common principles such as using the well-

known shortest path algorithms like Dijkstra, Bellman-Ford, etc. The

major routing schemes are usually focusing on how to select the most

optimal path (single path) in order to disseminate the data packets,

while various of single-path algorithms have been reported and

classified based on their QoS metrics. For all of the proposed

algorithms there is a set of common metrics such as bandwidth, delay,

jitter, packet loss and hop count. The concept of disjoint path, when

1 2Path Path ,

can be utilized in both data transmission scenarios, for instance it

can be employed as a backup for the single path methods or a

primary/backup for the multi ones. Disjoint paths have a significant

benefit over many aspects and it always more preferable to be used in

the context of enhancing the network performance like link/node

failure, loud balance improvement and for better network resource

utilization.

22. Algorithms and applications for the utilization of SDN technologies to IoT

219

The path computation is the core work for the controller after it

learns the network topology. Dijkstra’s and Floyd-Warshall algorithms

are commonly used for the shortest path computation. Dijkstra’s

algorithm computes all the shortest paths between a single-source to all

possible destinations; while Floyd-Warshall algorithm computes the

shortest paths for all possible source/destination pairs. In a legacy

network, each network node computes the shortest path from the node

to all destinations, so the Dijkstra’s algorithm is the best option. In

SDN networks, the controller knows the complete network topology

and is in charge of setting up paths for all possible source/destination

pairs, thus Floyd-Warshall algorithm is the good choice.

22.4 SDN Performance prediction

Regarding to the performance of the SDN and OpenFlow, there are

not much research focused on this topic, yet. The most common

approach to evaluate the performance of SDN is benchmark tools,

namely OFLOPS [22], OFCBenchmark [23], etc. OFLOPS is used to

measure the performance of OpenFlow-enabled hardware and software

switches on the controller side. OFCBenchmark is a benchmark tool

designed to create a set of message-generating virtual switches. Each

switch can be configured independently from each other to simulate a

specific scenario, at the same time keeping its own statistics. From

other hand, there are a lot of papers devoted do machine learning (ML)

algorithms that have been successfully applied to a wide variety of

problem. The application of ML to SDN communication and

networking is still in its infancy

22.4.1 Algorithms performance metrics

The comprehensive overview of Metrics for Analyzing,

Developing and Managing Telecommunication Networks is given in

[24]. In this paragraph, we will address to the metrics applicable to ML.

When applying ML to a classification problem, a common approach to

evaluate the ML-algorithm performance is to show its classification

accuracy and performance to overcome complexity.

22. Algorithms and applications for the utilization of SDN technologies to IoT

220

Comparison of ML algorithms and some performance metrics is

shown in Table 22.1.

Table 22.1 – Different use cases at network layers, metrics and

algorithms (adopted from [25])

Use Case Metrics Adopted

algorithms

Ref.

QoT estimation

(BER

classification)

Accuracy, false

positives

Naive Bayes,

Decision tree, RF,

J4.8 tree, CBR

[26]

Accuracy, AUC,

running time

KNN, RF [27]

Accuracy, Confusion

Matrix, ROC curves

KNN, RF, SVM [28]

MF recognition

in Stokes space

Running time, minimum

OSNR to achieve 95%

accuracy

K-means, EM,

DBSCAN,

OPTICS, spectral

clustering,

Maximum-

likelihood

[29]

Failure

Management

Confusion Matrix Bayesian

Inference, EM

[30]

Accuracy versus model

parameters (BER

sampling time, amount

of BER data etc.)

NN, RF, SVM [31]

Flow / Loss

Classification

Misclassification

probability (similar to

FPR)

HMM, EM [32]

22.4.2 An overall approach to detect and diagnose failures in SDN

A framework to identification performance problems and failure

detector based on troubleshooting and performance tuning methodology

for multi-database was proposed in [33], [34]. In this paper, we will

show the capability of our data fusion technique to ensure early

detection of SDN performance issues that arise as a result of cumulative

22. Algorithms and applications for the utilization of SDN technologies to IoT

221

effects (overloading requests, exceeding execution time, etc.) under

competing hypotheses. It is suggested that the SDN is in a critical state

when there is slow processing or some resource is heavily loaded to

respond in the normal state.

The methodology involves the use of data monitoring parameters

and metrics, obtained in real time and includes the following six stages,

(1) data preprocessing and normalization, (2) time-series forecasting,

(3) computing residuals for every node, (4) computing BPA for every

node, (5) fusion BPA, (6) decision making regarding future

performance issues.

At the first stage, the preliminary processing of the received data

and their normalization is carried out. This stage is necessary for

correct fusion since the parameters that are used to assess the state of

the database are measured in unequal units. At the next stage, data is

predicted using the ARIMA (Autoregressive Integrated Moving

Average) model. At the third stage, the obtained predicted values of

each parameter are used to calculate the prediction error residues, as
t

the forecast errors. These values will be used for fusion and assess

deviations.

,t t ty y (22.13)

where
ty - real value,

ty - predicted value.

At the fourth stage, the basic probability assessments (BPA) m(Х)

of the normal mі({N}) and critical state mі({C}) of the database system

are performed. For computing the BPA residuals obtained on the

previous stage are used. The main probability distribution function of

the normal state of the database system can be defined as follows.

2
1

21
exp

2

x

m N P x

, (22.14)

where x denotes the remainder of the parameter at a given time

stamp; μ is the average value of the balance of the state of the database

system; σ is the standard deviation of the residual of the state parameter

of the database system.

22. Algorithms and applications for the utilization of SDN technologies to IoT

222

In compliance with DS theory of evidence for full SDN set states

Ω = {N = “normal”, С =”critical”}, N∩С = Ω, the probability of the

critical state m ({C}) can be determined using (22.14):

 () 1 () m C m N . (22.15)

At the fifth stage, the fusion of the BPA for normal mі({N}) and

critical state mі({C}) is performed.

Since the number of evaluated parameters is more than two, the

hybrid model is used as the base model within the concept of

combining Dezert-Smarandache (DSmT) [35], which is an extension of

the Dempster-Shafer theory [36] with the following combination rule

mPCR(X), proposed by Martin and Osswald in [37] as a PCR6:

1 2

1 2

123...

1 1 2 2

, ,... \{ } 1 1 2 2
...

,

s

s

PCR

s

s s

X X X s s
X X X

m X m X

m X m X m X

m X m X m X

(22.16)

where 123... sm X m X corresponds to the conjunction of

consensus on X between s > 2 parameters, 123...sm X is the conjunctive

rule given by the equation

1 1

.

m

M

c j j

Y Y X j

m X m Y (22.17)

At the last stage, a model correction is carried out, a report is

generated for the ISP , and a decision is made to create an additional

report on the critical state of the database.

For two consecutive-time combined estimates of mPCR1
 and mPCR2

containing n mutually exclusive and exhaustive hypotheses, the

distance d between mPCR1
 and mPCR2 is calculated as (22.18):

2 2

PCR1 PCR2

PCR1 PCR2

PCR1 PCR2

m m1
m , m .

2 2 m ,m

d (22.18)

22. Algorithms and applications for the utilization of SDN technologies to IoT

223

The resulting value is used as the source of the decision about the

similarity of the indicators and, as the degree of belief for the predicted

state. Thus, a conflict of hypotheses regarding the existing problems

associated with the performance of the SDN can be determined the

probability of a critical overload of the system. The next section

contains an example of the implementation of technology for obtaining

predictions about the performance of the SDN.

22.4.3 Case study

The study uses the time series of 2006 observations of the

following parameters CPUW, ASES, and IOPS. Table 22.2 provides

quantitative metrics for different pieces of data.

Table 22.2 – A Fragment of the Initial Data, Sample #1

ID
SDN metrics

CPUW IOPS LoadProc

403 12,636 57,6812 1583

404 14,569 57,6812 1559

405 18,345 57,6812 1585

406 45,604 44,87961 1604

407 34,266 44,87961 1591

408 25,791 44,87961 1579

409 15,362 47,92667 1481

Figures 22.5, 22.6, and 22.7 show the different time series of

observations of CPUW, ASES, and IOPS with a time step of

observations equal to 5 minutes.

22. Algorithms and applications for the utilization of SDN technologies to IoT

224

Fig. 22.5 – Sample #1

Fig. 22.6 – Sample #2

Fig. 22.7 – Sample #3

Data normalization. Data normalization was carried out using the

calculation of the percentage of approximation of the current values of

monitored parameters to their preset limits.

The maximum values of selected metrics are taken as 100%, and

the values of real data are estimated, relative to their approximation to

the limit values.

The examples of normalized data are presented in Tables 22.3-

22.5.

22. Algorithms and applications for the utilization of SDN technologies to IoT

225

Table 22.3 – A fragment of the normalized data, sample #1

ID
Metrics

CPUW’ IOPS’ ASES’

403 12,636 57,6812 14

404 14,569 57,6812 12

405 18,345 57,6812 14

406 45,604 44,87961 15

407 34,266 44,87961 14

408 25,791 44,87961 13

409 15,362 47,92667 9

Let us assume that CPUW, IOPS parameters are obtained as a

percentage of the available system resources and do not require

additional normalization (100% CPUW or IOPS corresponds the worst

state of the SDN). LoadProc is taken from the host operation system

(OS) and requires normalization since the maximum number of

processes that can be started may vary depending on the system.

Table 22.4 – A fragment of the normalized data, sample #2

ID
SDN metrics

CPUW’ IOPS’ ASES’

857 6,796 71,59825 21

858 5,966 71,59825 10

859 4,940 71,59825 12

860 8,807 76,54575 10

861 13,563 76,54575 33

862 13,725 73,60774 26

863 11,178 73,60774 34

Table 22.5 –A fragment of the normalized data, sample #3

ID
SDN metrics

CPUW’ IOPS’ ASES’

1366 75,083 51,83118 30

1367 80,318 51,83118 22

22. Algorithms and applications for the utilization of SDN technologies to IoT

226

Next, we determine the minimum indicator of the system operating

in which there are no external connections to the database, only the

processes of the OS system and the database. In our case, it corresponds

to 66%. This number is taken as the initial or zero state. So, for a

system with an established maximum of 2,000 processes, 1,583

processes account for 80%.

Performance prediction

Prediction of the parameter values was performed using the

Autoregressive Integrated Moving Average (ARIMA) model.

1 1 1 1
ˆ , t y p y p t q t qy y y e e (22.19)

where ˆ
ty denotes the predicted value, , ,k l are the parameters

of the model, р is the order of autoregression, q is the order of the

moving average,
te denotes the random noise at the time.

The prediction of state of the database was performed for three

metrics (CPU, ASES, IOPS) for 1373 time steps.

To assess the quality of the forecasting model, the Bayes

Information Criterion (BIC) was used.

2ln() ln(). BIC L k n (22.20)

As a result, the ARIMA (1,1,1) model with the minimum value of

BIC was chosen.

The predicted and actual values for CPU, ASES and IOPS are

plotted in Fig. 22.8, 22.9 and 22.10 respectively.

1368 75,815 53,57843 21

1369 70,036 53,57843 22

1370 69,131 53,57843 20

1371 71,127 48,31402 20

1372 71,340 48,31402 19

22. Algorithms and applications for the utilization of SDN technologies to IoT

227

Fig. 22.8 – Predicted and actual CPU values

Fig. 22.9 – Predicted and actual ASES values

Fig. 22.10 – Predicted and actual IOPS values

As can be seen from the figures, the predicted values closely

correlate with the actual data values. However, as mentioned above,

there is a set of competing hypotheses argued for CPU, IOPS and ASES

parameters in different time steps that complicate the detection of

database performance issues.

22. Algorithms and applications for the utilization of SDN technologies to IoT

228

Residuals of the ARIMA model

The residuals for three fragments of normalized data metrics of the

database are presented in Tables 22.6-22.8 respectively.

Table 22.6 – Residuals fragment of the sample #1

ID
Residuals

RCPUW RIOPS RАSES

403 0,51302 -0,29273 0,12161

404 -0,46444 0,10807 0,305274

405 -0,10301 -0,09519 0,00709

Table 22.7 – Residuals fragment of the sample #2

ID
Residuals

RCPUW RIOPS RАSES

860 -0,43145 -0,10342 1,29507

861 -0,10942 0,03312 3,06829

862 -0,21710 0,20911 1,20827

Table 22.8 – Residuals fragment of the sample #3

ID
Residuals

RCPUW RIOPS RАSES

1366 1,36751 0,39218 -0,85509

1367 0,05604 -0,19447 0,30656

1368 -1,4567 -0,20819 -0,57332

In the absence of noise, these residues usually show smooth

fluctuations, which can be observed in the residuals plots. Then the

residuals of the three sensitivity parameters are used as sources of

evidence for using the DSmT fusion method and the results of fusion is

the probability of a critical state of the database system.

Basic probability assignment

BPA is calculated by the equation (22.14) for each parameter of the

database state for each epoch. The fragments of the results of the

calculation of BPA for the normal (N) and critical (C) state of the

22. Algorithms and applications for the utilization of SDN technologies to IoT

229

database is presented in Tables 22.9-22.11. As it can be seen from the

tables, there are six partial conflicts between data.

Table 22.9 –A Fragment of the Calculation of BPA for the Sample

#1

ID

Basic probability assessment

mCPU

(N)

mCPU

(C)

mIOPS

(N)

mIOPS

(C)

mASES

(N)

mASES

(C)

403 0,40605 0,59395 0,66328 0,33671 0,39207 0,60793

404 0,45162 0,54837 0,77489 0,22511 0,36874 0,63126

405 0,52881 0,47119 0,77490 0,22510 0,40030 0,59970

Table 22.10 – A Fragment of the Calculation of BPA for the

Sample #2

ID

Basic probability assessment

mCPU

(N)

mCPU

(C)

mIOPS

(N)

mIOPS

(C)

mASES

(N)

mASES

(C)

860 0,46259 0,53741 0,77225 0,22775 0,14637 0,85363

861 0,52839 0,47161 0,78967 0,21033 0,00229 0,99771

862 0,51584 0,48416 0,72947 0,27053 0,16521 0,83479

Table 22.11 – A Fragment of the Calculation of BPA for the

Sample #3

ID

Basic probability assessment

mCPU

(N)

mCPU

(C)

mIOPS

(N)

mIOPS

(C)

mASES

(N)

mASES

(C)

1366 0,09254 0,90746 0,59034 0,40966 0,30445 0,69555

1367 0,52677 0,47323 0,73050 0,26950 0,36854 0,63146

1368 0,08917 0,91083 0,72236 0,27764 0,36195 0,63805

Data fusion

In such manner we get all BPA and apply DSmT combination rule

for each partial conflict using formula (22.16), as demonstrated below:

22. Algorithms and applications for the utilization of SDN technologies to IoT

230

 136 1366 1366 6 0,09254 0,69555

0,40966 0,0264.

ICPU AS SE OS Pm mN C m C

,2 ,3 0.0264
0,022.

0.09254 0,69555 0.40966 1,1977

PCR PCRPCR
C CN

x xx

,2

,3

0,09254 0,0220 0,002,

0,69555 0,0220 0,0153,

0,40966 0,0220 0,009,

PCR

N

PCR

C

PCR

C

x

x

x

and therefore with mPCR(X), the following redistributions to N and

C states are obtained:

1

1 ,2 ,3

0,002,

0,0153 0,009 0,0243.

PCR

N

PCR PCR PCR

C C C

x

x x x

A fragment of the results of the calculation partial conflicts for the

normal and critical state of the database is presented in Table 22.12 and

Table 22.13.

Table 22.12 – The partial conflicts Xj(N) for the sample #3

ID
Partial conflicts Xi(N)

X1(N) X2(N) X3(N) X4(N) X5(N) X6(N)

1366 0,0020 0,0212 0,1003 0,0810 0,0188 0,0057

1367 0,0331 0,0156 0,0869 0,0891 0,1618 0,0402

1368 0,0014 0,0214 0,1335 0,1294 0,0230 0,0055

Table 22.13 – The partial conflicts Xj(C) for the sample #3

ID
Partial conflicts Xi(C)

X1(C) X2(C) X3(C) X4(C) X5(C) X6(C)

1366 0,0243 0,0919 0,2723 0,0821 0,0192 0,0059

1367 0,0566 0,0314 0,1314 0,0383 0,0812 0,0121

1368 0,0144 0,0702 0,2863 0,1087 0,0181 0,0034

22. Algorithms and applications for the utilization of SDN technologies to IoT

231

Therefore, with PCR one finally gets
6

, ,

1

0,016632 0,2() 4(.56)

 PCR

CPU ASES IOPS i

i

m N x N

6

, ,

1

0,258571 0,7() 5(.44)

 PCR

CPU ASES IOPS i

i

m C x C

A fragment of the results of the calculation
, ,

PCR

CPU ASES IOPSm for normal

and critical state of the database is presented in Table 22.14.

Table 22.14 – The Results of Data Fusion for sample #3

ID
PCR

CPU,ASES,IOPS
m (N)

PCR

CPU,ASES,IOPS
m (C)

1366 0,0243 0,0919

1367 0,0566 0,0314

1368 0,0144 0,0702

Figure 22.11 summarizes the experimental results for fusion CPU,

IOPS and ASES on time steps 1366-1381 as a two lines for normal

(green dash line) and critical states (red dash line).

Fig. 22.11 – Data fusion results for Sample#3

As can be seen from Fig. 22.8, the calculated values at the time-

steps #1367, 1369, 1370, 1371, 1378 show that SDN state is normal, but

22. Algorithms and applications for the utilization of SDN technologies to IoT

232

the real values of CPUW and ASES are not normal, that could mean

failure propagation. In this situation, the correction of the model is

needed.

Applying equation (22.18) and calculating the distance between

two BPA enables to correct values between two time periods and

allows making a decision concerning the state of SDN.

The results of the distance calculation for Saple#3 are presented in

Table 22.15.

As is seen from Fig. 22.11, on time-step #1366 the values point on

the critical state, at #1367 they are normal, so we calculate the distance,

at #1368 a second assumption about critical state appears.

Table 22.15 – A fragment of the calculation of BPA for the sample

#3

ID

mCPU

(N)

mCPU

(C)

mASES

(N)

mASES

(C)

dbpa

(m1,m2)

dbpa

(m1,

m2)

1366 0,093 0,907 0,304 0,696

1367 0,091 0,473 0,369 0,631 0,307 -

1368 0,089 0,911 0,362 0,638 0,722 0,002

1369 0,092 0,908 0,380 0,620 0,207 0,205

1370 0,178 0,822 0,401 0,599 0,306 0,308

1371 0,0923 0,908 0,367 0,633 0,002 0,311

1372 0,134 0,866 0,370 0,630

1373 0,092 0,908 0,114 0,886

Distance between previous critical state is equal to 0,024 so critical

state are similar that correcting the value #1367 to 0,091. The system

alert from 3 critical state has passed, at #1369 there are two critical

signals from CPU and ASES that are above 0,5. After this step we

correct value to 0,092. Steps #1370, 1371 are passed as normal. At step

#1372 two BPA(C) of CPU and ASES are above 0,5 than correcting the

values #1370, 1371, 1372 to 0,178; 0,0923; 0,134. Final step #1373 has

two BPA(C) of CPU and ASES are above 0,5 than correcting the value

to 0,0923.

22. Algorithms and applications for the utilization of SDN technologies to IoT

233

The corrected results are shown in Fig. 22.12 by two additional

lines for probabilities of normal (green bold line) and critical states (red

bold line) that most closely approximate the real state of the system.

The prediction models can be used to increase the ability of the

ISP to respond on different performance issues. Grounded on history

monitoring data, Network I/O, query complexity etc. for various data

sizes the performance prediction models evaluate the query execution

time and inform ISP about upcoming trouble event. This makes it

possible to identify risks and prepare mitigating plan.

Thus, using the proposed methodology, in conditions of conflict of

probabilities of values and analysis of time series, system is able to

compute the probability of occurrence of performance issues and

critical state.

Fig. 22.12 – Correcting the model values for Sample#3

When troubleshooting forecast or alarm is triggered, the ISP will

obtain automatic notify (via e-mail, web-page, etc.) about the recent

developments to take appropriate action. This approach allows users to

maintain a stable yet optimal performance of their business-critical

systems.

22. Algorithms and applications for the utilization of SDN technologies to IoT

234

22.5 Work related analysis

There are different approaches to enforce service level agreements

in SDN and virtualized network functions. Bendriss et al. [3] proposed

a technique to prediction of service level objectives breaches for

streaming services deploying on NFV and SDN. An analytical model to

measure performance of SDN deployment based on stochastic network

calculus is presented in [1]. Research on Load Balance Method in SDN

is presented in [38]. Hani et al. [39] raise the issue of predicting

violations of SLA. They define SLA violation as deviations from the

conditions agreed on in the SLA. They use a Support Vector Machine

(SVM) adapted for regression, termed SVR, for time series forecasting.

They identify two SLOs, namely, bandwidth and response time in cloud

database. The final evaluation shows a minimum accuracy of more than

80% for 10 days look ahead.

Another interesting issue not discussed in this chapter is Intrusion

detection in SDN. It has a big potential to further research and

deployment in SDN. Thus, Kokila et al. [40] proposed a method for

detection of DDoS attacks on the SDN controller.

Our colleagues from University of Leeds [41] developed a Deep

Neural Network (DNN) model for an intrusion detection system and

trained it with the NSL-KDD Dataset. In this work, they used six basic

features (that can be easily obtained in an SDN environment) taken

from the fortyone features of NSL-KDD Dataset. Through experiments,

they confirmed that the deep learning approach shows strong potential

to be used for flow-based anomaly detection in SDN environments. The

key difference between their work and other papers is that they uses

simplex preprocessing and features extraction in the SDN context. A

comprehensive survey of recent works that apply SDN to security, and

identify promising future directions that can be addressed by such

research is prepared by multinational research team from Newcastle

University (UK), university of New South Wales (Australia) and Cisco

Systems (Australia) [42].

The course IK3619 Software Defined Networking (SDN) and

Network Functions Virtualization from KTH Royal Institute of

Technology [43] is targeted on a deep understanding of two important,

emerging network technologies: Software Defined Networking (SDN)

22. Algorithms and applications for the utilization of SDN technologies to IoT

235

and Network Functions Virtualization (NFV). This course consists of 4

hours of lectures and 16 hours of discussion of research papers. The

teachers present the basic material and then assign selected research

papers to be presented by the students in class. Each student will be

required to read and write a paper summary (evaluation) of each of the

assigned papers before presenting the paper and participating in a

discussion of the paper during class. The course will also include

assignments in the form of small projects.

Conclusions and questions

In this section, the materials for module PC2 of PhD course

“Software Defined Networks and IoT” are presented. They can be used

for preparation to lectures and self-learning. The materials were

developed by Prof. I.S. Skarga-Bandurova, Ph.D. student M.V.

Nesterov and Ph.D. student A.Y. Velykzhanin.

Due to SDN is a recently emerging paradigm, there are only a

limited number of studies on implementing specific QoS models over

SDN. In this chapter, we review the existent algorithms and approaches

to utilizing SDN technology in IoT and take a look at perspectives on

SDN performance prediction using data fusion technique. Traditional

and novel algorithms applicable in SDN can be used for the following

tasks: SLA management; smart routing and optimal VM placement;

solving controller placement problem; load balancing; performance

prediction; intrusion detection and prevention. Some of them are tested

and implemented well; others need to be improved that gives a wide

corridor for new research and innovations.

In order to better understand and assimilate the course content that

is presented in this section, we encourage you to answer the following

questions.

1. What categories of algorithms are used applicable to SDN and

IoT?

2. What parameters SLA agreement generally comprises?

3. Categories of SLA management.

4. SLA metrics.

5. How to overcome problems with server-side crashes caused by

hardware crashes, such as hard disk or memory module crashes

and program problems, such as program errors or configuration

errors?

22. Algorithms and applications for the utilization of SDN technologies to IoT

236

6. How QoS routing algorithms can be analyzed?

7. What metrics can be used to evaluate algorithms performance?

8. What is the tasks of the TE routing algorithm?

9. What QoS routing algorithms can be used for large-scale SDN?

10. Traffic scheduling algorithms.

11. What tasks are solved in traffic engineering for SDN?

12. What means good controller placement?

13. What metrics can be used to evaluate the position of the SDN-

controller?

14. SDN-controller placement algorithms.

15. How reduce the load on the controller?

16. Load balance strategies.

17. What algorithms can be used to finding the optimal path in

SDN networks?

References

1. C. Lin, C. Wu, M. Huang, Z. Wen, Q. Zheng, "Performance

Evaluation for SDN Deployment: an Approach based on Stochastic Network

Calculus", Wireless Communication over ZigBee for Automotive Inclination

Measurement. China Communications, vol. 13(1), pp. 98-106, 2016. DOI:

10.1109/CC.0.7560881.

2. S. Dixit, "Future of IMT Systems: Wireless World Vision 2020"

Reseatch Forum, 2013. [Online]. Available: https://www.itu.int/en/ITU-

D/Technology/Documents/Events2013/RegionalForumIMT_ARB_Tunis_May

2013/Presentations/RegForumIMT_2013_ARB_Tunis_May13_Presentation_S

Dixit_2.pdf [Accessed: 25 December 2017].

3. J. Bendriss, I.G. Ben Yahia, D. Zeghlache, "Forecasting and

anticipating SLO breaches in programmable networks", 20th Conference on

Innovations in Clouds, Internet and Networks (ICIN), March 2017.

doi:10.1109/icin.2017.7899402.

4. G. Choudhury, D. Lynch, G. Thakur, S. Tse "Two Use Cases of

Machine Learning for SDN-Enabled IP/Optical Networks: Traffic Matrix

Prediction and Optical Path Performance Prediction", Arxiv.org, 2019.

[Online]. Available: https://arxiv.org/abs/1804.07433 [Accessed: 23- Feb-

2019].

5. S. Tomovic, I. Radusinovic, N. Prasad, "Performance comparison of

QoS routing algorithms applicable to large-scale SDN networks", IEEE

EUROCON 2015 - International Conference on Computer as a Tool

(EUROCON), September 2017, DOI: 10.1109/EUROCON.2015.7313698.

https://arxiv.org/search/cs?searchtype=author&query=Choudhury%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Lynch%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Thakur%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Tse%2C+S
https://doi.org/10.1109/EUROCON.2015.7313698

22. Algorithms and applications for the utilization of SDN technologies to IoT

237

6. S. Das, Y. Yiakoumis, G. Parulkar, N. McKeown, P. Singh, D.

Getachew, P.D. Desai, "Application-aware aggregation and traffic engineering

in a converged packet-circuit network", Optical Fiber Communication

Conference and Exposition and the National Fiber Optic Engineers

Conference (OFC/NFOEC), March 2011, pp.1-3.

7. R. Yanggratoke et al., "Predicting service metrics for cluster-based

services using real-time analytics", 11th International Conference on Network

and Service Management (CNSM), November 2015, pp. 135–143.

DOI: 10.1109/CNSM.2015.7367349

8. D.O. Awduche, L. Berger, D. Gain, T. Li, G. Swallow, and V.

Srinivasan. "Extensions to RSVP for LSP Tunnels", Internet Draft draftietf-

mpls-rsvp-lsp-tunnel-04.txt, September 1999.

9. Ren, H., Li, X., Geng, J., & Yan, J. (2016). A SDN-Based Dynamic

Traffic Scheduling Algorithm. 2016 International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery

(CyberC).doi:10.1109/cyberc.2016.103

10. Kennington, J. and A. Madhavan. "Optimization Models and

Algorithms for Minimizing the Maximum Link Utilization in Ospf Data

Networks." 'Technical report, http://lyle.smu.edu/ jlk/. 2007.

11. Resende M and Pardalos P. Handbook of Optimization in

Telecommunications[M]. New York, Springer Science +Business Media,

2006: 679-700.

12. Fortz B and Thorup M. Internet traffic engineering by optimizing

ospf weights[C]. IEEE Infocom Proceedings, Tel Aviv, Israel, Aug, 2000, 2:

518-528.

13. Hock, D., Hartmann, M., Gebert, S., Jarschel, M., Zinner, T., &

Tran-Gia, P. (2013). Pareto-optimal resilient controller placement in SDN-

based core networks. Proceedings of the 2013 25th International Teletraffic

Congress (ITC).doi:10.1109/itc.2013.6662939

14. B. Heller, R. Sherwood, and N. McKeown, “The Controller

Placement Problem,” in Proc. of ACM HotSDN’12, pp. 7–12, August 2012.

15. M. Shindler. Approximation algorithms for the metric k-median

problem. Written Qualifying Exam Paper, University of California, Los

Angeles. Cited on, page 44.

16. V. Vazirani. Approximation algorithms. Springer Verlag, 2001.

17. D. Hochba. Approximation algorithms for np-hard problems. ACM

SIGACT News, 28(2):40–52, 1997.

18. Y. Li, D. Pan, "OpenFlow based load balancing for Fat-Tree

networks with multipath support", 12th IEEE International Conference on

Communications (ICC’13), 2013, pp. 1-5.

22. Algorithms and applications for the utilization of SDN technologies to IoT

238

19. I.F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, "Research

Challenges for Traffic Engineering in Software Defined Networks", [Online].

Available: https://bwn.ece.gatech.edu/papers/2016/TrEnggSDN.pdf

[Accessed: 25 December 2017].

20. I.F. Akyildiz et al., "A Roadmap for Traffic Engineering in

Software Defined Networks", Computer Networks, vol. 71, Oct. 2014, pp. 1–

30.

21. M. Al-Fares et al., "Hedera: Dynamic Flow Scheduling for Data

Center Networks" Symposium on Networked Systems Design and

Implementation, vol. 10, April 2010, p. 19.

22. C. Rotsos, N. Sarrar, S. Uhlig, et al. "OFLOPS: An open framework

for OpenFlow switch evaluation", Passive and Active Measurement. Springer

Berlin Heidelberg, 2012, pp. 85-95.

23. M. Jarschel, F. Lehrieder, Z. Magyari, et al. "A flexible OpenFlow

controller benchmark", IEEE European Workshop on Software Defined

Networking (EWSDN), 2012, pp. 48-53.

24. S.M. Al-Shehri, P. Loskot, and M. Mert, "Common Metrics for

Analyzing, Developing and Managing Telecommunication Networks",

Arxiv.org, 2019. [Online]. Available:

https://arxiv.org/ftp/arxiv/papers/1707/1707.03290.pdf [Accessed: 2-May-

2019].

25. F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M.

Ruffini, and M. Tornatore, "An Overview on Application of Machine Learning

Techniques in Optical Networks" Arxiv.org, 2019. [Online]. Available:

https://arxiv.org/pdf/1803.07976.pdf [Accessed: 2-May-2019].

26. I. de Miguel, R.J. Duran, T. Jimenez, N. Fernandez, J.C. Aguado,

R.M. Lorenzo, A. Caballero, I.T. Monroy, Y. Ye, A. Tymecki et al.,

"Cognitive dynamic optical networks", IEEE/OSA Journal of Optical

Communications and Networking, vol. 5, no. 10, pp. A107–A118, Oct. 2013.

27. C. Rottondi, L. Barletta, A. Giusti, and M. Tornatore,

“Machinelearning method for quality of transmission prediction of

unestablished lightpaths,” IEEE/OSA Journal of Optical Communications and

Networking, 2018, vol. 10, no. 2, pp. A286–A297.

28. S. Aladin and C. Tremblay, "Cognitive Tool for Estimating the QoT

of New Lightpaths", in Optical Fiber Communications Conference (OFC)

2018, Mar. 2018.

29. R. Boada, R. Borkowski, and I. T. Monroy, "Clustering algorithms

for Stokes space modulation format recognition", Optics Express, 2015, vol.

23, no. 12, pp. 15521–15531.

30. S. Gosselin, J. L. Courant, S. R. Tembo, and S. Vaton, "Application

of probabilistic modeling and machine learning to the diagnosis of FTTH

22. Algorithms and applications for the utilization of SDN technologies to IoT

239

GPON networks", International Conference on Optical Network Design and

Modeling (ONDM) 2017, May 2017, pp. 1–3.

31. S. Shahkarami, F. Musumeci, F. Cugini, and M. Tornatore,

"MachineLearning-Based Soft-Failure Detection and Identification in Optical

Networks", Optical Fiber Communications Conference (OFC) 2018, Mar.

2018.

32. A. Jayaraj, T. Venkatesh, and C. S. Murthy, "Loss Classification in

Optical Burst Switching Networks Using Machine Learning Techniques:

Improving the Performance of TCP", IEEE Journal on Selected Areas in

Communications, vol. 26, no. 6, pp. 45–54, Aug. 2008.

33. M. Nesterov, I. Skarga-Bandurova "Troubleshooting and

Performance Methodology for Business Critical Systems", The 9th IEEE

International Conference on Dependable Systems, Services and Technologies

(DESSERT'2018), May 2018, р. 551-555.

34. I. Skarga-Bandurova, M. Nesterov, T. Biloborodova, G. Krivoulya,

I. Kotsiuba, O. Biloborodov, "Data Fusion Technique to Predicting Database

Performance Issues", Conf. Proceedings of 2019 IEEE 10th International

Conference on Dependable Systems, Services and Technologies

(DESSERT'2019), UK, Leeds, June, 2019. In press.

35. J. Dezert, An introduction to DSmT.

http://fs.unm.edu/IntroductionToDSmT.pdf. [Accessed 12 January 2019].

36. G. Shafer, "A Mathematical Theory of Evidence", Princeton Univ.

Press, Princeton, NJ, 1976.

37. "Advances and applications of DSmT for information fusion" F.

Smarandache, J. Dezert (Editors), American Research Press, Rehoboth, NM,

U.S.A., Vol. 1–3, 2004–2009. [Online]. Available:

http://fs.gallup.unm.edu//DSmT.htm. [Accessed 12 January 2019].

38. C. Chen-xiao, X. Ya-bin, "Research on Load Balance Method in

SDN", International Journal of Grid and Distributed Computing, 2016, vol.

9(1), pp. 25–36.DOI:10.14257/ijgdc.2016.9.1.03.

39. A.F. Hani, I.V. Paputungan, M.F. Hassan, "Support Vector

regression for Service Level Agreement violation prediction", International

Conference on Computer, Control, Informatics and Its Applications (IC3INA),

November 2013. DOI: 10.1109/IC3INA.2013.6819192.

40. R.T. Kokila, S.T. Selvi, K. Govindarajan, "DDoS detection and

analysis in SDNbased environment using support vector machine classifier",

IEEE Sixth International Conference on Advanced Computing (ICoAC),

Chennai, India, December 2014, pp. 205-210.

41. T.A. Tang, L. Mhamdi, D. McLernon, et al. "Deep Learning

Approach for Network Intrusion Detection in Software Defined Networking",

The International Conference on Wireless Networks and Mobile

http://fs.unm.edu/IntroductionToDSmT.pdf
http://fs.gallup.unm.edu/DSmT.htm

22. Algorithms and applications for the utilization of SDN technologies to IoT

240

Communications (WINCOM'16), October 2016, Fez, Morocco. ISBN 978-1-

5090-3837-4

42. S. Ali, V. Sivaraman, A. Radford and S. Jha, "A Survey of Securing

Networks Using Software Defined Networking", IEEE Transactions on

Reliability, vol. 64, no. 3, pp. 1086-1097, 2015. Available:

10.1109/tr.2015.2421391 [Accessed 28 July 2019].’

43. KTH | IK2220", Kth.se, 2019. [Online]. Available:

https://www.kth.se/student/kurser/kurs/IK2220?l=en. [Accessed: 28- Jul-

2019].

23. SDN in Context of Devops Technology

241

23. SDN IN CONTEXT OF DEVOPS TECHNOLOGY

Dr, Associated Prof. D. D. Uzun, Y.O. Uzun, DrS, Prof. V. S. Kharchenko

Contents

Abbreviations .. 242

23.1 DevOps technology overview ... 243

23.1.1 Basic concepts and principles ... 243

23.1.2 Techniques and tools .. 248

23.2 DevSecOpS .. 256

23.2.1 Features and purposes ... 256

23.2.2 Approaches ... 258

23.3 SDN and DevOpS .. 262

23.3.1 SDN and DevOpS interconnection ... 262

23.3.2 Leading practices for SDN and DevOps 266

23.4 DevOpS and IoT ... 272

23.4.1 General ... 272

23.4.2 Reasons DevOps matter in IoT ... 274

23.5 Work related analysis .. 279

Conclusion and questions .. 279

References ... 281

23. SDN in Context of Devops Technology

242

Abbreviations

AWS – Amazon Web Service

CI/CD - Continuous Integration and Continuous Delivery

CDN – Content Delivery Network

COTS – Commercial off the Shelf

CSP – Communication Service Provider

DAST – Dynamic Application Security Testing

DevOps – Development and Operations

DevSecOps – Development and Security Operations

EPC – Evolved Packet Core

IMS – IP Multimedia System

LAN – Local Area Network

MANO – Management and Orchestration

MS – Microsoft

NFV – Network Function Virtualization

OLA – Organization Level Agreement

OTT – Over-The-Top

OWASP – Open Web Application Security Project

SAST – Static Application Security Testing

SCM – Source Control Management

SDLC – Software Development Lifecycle

SDN – Software Defined Networking

SLA – Service Level Agreement

SQM – Service Quality Management

VNF – Virtual Network Functions

WAN – Wide Area Network

https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_delivery

23. SDN in Context of Devops Technology

243

23.1 DevOps technology overview

As innovation accelerates and customer needs rapidly evolve,

businesses must become increasingly agile. Time to market is key, and

to facilitate overall business goals, IT departments need to be agile.

Over the years software development lifecycles moved from waterfall

to agile models of development. These improvements are moving

downstream toward IT operations with the evolution of methodology

Development and Operations (DevOps).

In order to meet the demands of an agile business, IT operations

need to deploy applications in a consistent, repeatable, and reliable

manner. This can only be fully achieved with the adoption of

automation.

Widespread platforms, like AWS, MS Azure, Google Cloud, etc.

support numerous DevOps principles and practices that IT departments

can capitalize on to improve business agility.

This section focuses on DevOps principles and practices supported

on the well-known platforms, like AWS, MS Azure, Google Cloud, etc.

A brief introduction to the origins of DevOps sets the scene and

explains how and why DevOps has evolved. Interconnection of

DevOps, Software Defined Networks (SDN) and IoT is analysed.

23.1.1 Basic concepts and principles

DevOps is a new term that primarily focuses on improved

collaboration, communication, and integration between software

developers and IT operations. It’s an umbrella term that some describe

as a philosophy, cultural change, and paradigm shift.

Historically many organizations have been vertically structured

with poor integration among development, infrastructure, security and

support teams. Frequently the groups report into different

organizational structures with different corporate goals and

philosophies.

Deploying software has predominately been the role of the IT

operations group. Fundamentally developers like to build software and

change things quickly, whereas IT operations focus on stability and

reliability. This mismatch of goals can lead to conflict, and ultimately

the business may suffer.

23. SDN in Context of Devops Technology

244

Figure 23.1 - Code transmission process

Today, these old divisions are breaking down, with the IT and

developer roles merging and following a series of systematic principles:

• Continuous Integration/Continuous Delivery

• Infrastructure as code

• Continuous deployment

• Automation

• Monitoring

• Security

An examination of each of these principles reveals a close

connection to the offerings available from Amazon Web Services.

Agile Evolution to DevOps. To fully appreciate DevOps principles,

it is helpful to understand the context in which they evolved. The story

begins with agile software development, which became popular over a

decade ago and was seen as better approach to building software. Prior

to agile, the dominant waterfall development methodology was based

on a sequence starting with a requirements phase where 100% of the

system under development was defined up front. The approach has

shown itself to be inflexible and monolithic.

The agile model brought the concept of new and improved

collaboration between business users and developers. Software

development began to focus on iterations of working software that

would evolve over time, delivering value along the way. Agile is a

disciplined engineering process, and numerous tools now support it. For

developers, such tools include IDEs, unit test frameworks, and code

optimizers. As developers become more productive, the business

becomes more agile and can respond to their customer requests more

quickly and efficiently.

23. SDN in Context of Devops Technology

245

Over the last few years, the agile software development evolution

has started to move downstream towards infrastructure under the label

DevOps. Whereas agile software development primarily focuses on the

collaboration between the business and its developers, DevOps focuses

on the collaboration between developers, IT operations and security

teams. IT operations include system administrators, database

administrators, network engineers, infrastructure architects, and support

personnel. Whereas agile software development provides business

agility, DevOps provides IT agility, enabling the deployment of

applications that are more reliable, predicable, and efficient.

DevOps practices vary with the task: With application

development, DevOps focuses on code building, code coverage, unit

testing, packaging, and deployment. With infrastructure, on the other

hand, DevOps focuses on provisioning, configuration, orchestration,

and deployment. But in each area the underlying principles of version

management, deployment, roll back, roll forward, and testing remain

the same.

Continuous Integration. Continuous integration is a software

development practice where developers regularly merge their code

changes into a central repository, after which automated builds and tests

are run. The key goals of continuous integration are to find and address

bugs quicker, improve software quality, and reduce the time it takes to

validate and release new software updates.

Continuous Delivery. Continuous delivery is a software

development practice where code changes are automatically built,

tested, and prepared for a release to production. It expands upon

continuous integration by deploying all code changes to a testing

environment and/or a production environment after the build stage.

When continuous delivery is implemented properly, developers will

always have a deployment-ready build artifact that has passed through a

standardized Gecko Test process.

Infrastructure as Code. A fundamental principle of DevOps is to

treat infrastructure the same way developers treat code. Application

code has a defined format and syntax. If the code is not written

according to the rules of the programming language, applications

cannot be created. Code is stored in a version-management system that

logs a history of code development, changes, and bug fixes. When code

is compiled (built) into applications, we expect a consistent application

23. SDN in Context of Devops Technology

246

to be created. That is to say, the build is repeatable and reliable.

Practicing “infrastructure as code” means applying the same rigor

of application code development to infrastructure provisioning. All

configurations should be defined in a declarative way and stored in a

version management system, just like application code. Infrastructure

provisioning, orchestration, and deployment should support the use of

the “infrastructure code.”

Until recently the rigor applied to application code development

has not necessarily been applied to infrastructure. Frequently

infrastructure is provisioned using manual processes. Scripts developed

during the provisioning may not be stored in version control systems

and the creation of environments is not always repeatable, reliable, or

consistent.

In contrast, widespread platforms, like AWS, MS Azure, Google

Cloud, etc. provide a DevOps-focused way of creating and maintaining

infrastructure. Similar to the way software developers write application

code, AWS and others provide similar services that enable the creation,

deployment and maintenance of infrastructure in a programmatic,

descriptive, and declarative way. These services provide rigor, clarity,

and reliability. These services discussed in this paper are core to a

DevOps strategy and form the underpinnings of numerous higher level

cloud provider platform DevOps principles and practices.

Continuous Deployment. Continuous deployment is another core

concept in a DevOps strategy. Its primary goal is to enable the

automated deployment of production-ready application code.

Sometimes continuous deployment is referred to as continuous

delivery. The only difference is that continuous deployment usually

refers to production deployments.

By using continuous delivery practices and tools, software can be

deployed rapidly, repeatedly, and reliably. If a deployment fails, it can

be automatically rolled back to previous version.

Blue–Green Deployment. Blue–green deployment is a DevOps

deployment practice that uses domain name services (DNS) to make

application deployments. The strategy involves starting with an existing

(blue) environment while testing a new (green) one. When the new

environment has passed all the necessary tests and is ready to go live,

you simply redirect traffic from the old environment to the new one via

DNS.

23. SDN in Context of Devops Technology

247

The ability to create and dispose of identical environments easily

in the cloud provider services makes DevOps practices like blue–green

deployment feasible.

The blue–green deployment can be also used for back-end services

like database deployment and failover.

Automation. Another core philosophy and practice of DevOps is

automation. Automation focuses on the setup, configuration,

deployment, and support of infrastructure and the applications that run

on it. By using automation, you can set up environments more rapidly

in a standardized and repeatable manner. The removal of manual

processes is a key to a successful DevOps strategy. Historically, server

configuration and application deployment have been predominantly a

manual process. Environments become nonstandard, and reproducing

an environment when issues arise is difficult.

The use of automation is critical to realizing the full benefits of the

cloud. Widespread platforms, like AWS, MS Azure, Google Cloud, etc.

relies heavily on automation to provide the core features of elasticity

and scalability. Manual processes are error prone, unreliable, and

inadequate to support an agile business. Frequently an organization

may tie up highly skilled resources to provide manual configuration.

Time could be better spent supporting other, more critical and higher

value activities within the business.

Modern operating environments commonly rely on full automation

to eliminate manual intervention or access to production environments.

This includes all software releasing, machine configuration, operating

system patching, troubleshooting, or bug fixing. Many levels of

automation practices can be used together to provide a higher level end-

to-end automated process.

Automation has many benefits:

• Rapid changes

• Improved productivity

• Repeatable configurations

• Reproducible environments

• Leveraged elasticity

• Leveraged auto scaling

• Automated testing

Automation is a cornerstone of cloud provider services and should

be internally supported in all services, features, and offerings.

23. SDN in Context of Devops Technology

248

Monitoring. Communication and collaboration is fundamental in a

DevOps strategy. To facilitate this, feedback is critical. Such core

services should provide a robust monitoring, alerting, and auditing

infrastructure so developers and operations teams can work together

closely and transparently.

Security. In a DevOps enabled environment, focus on security is

still of paramount importance. Infrastructure and company assets need

to be protected, and when issues arise they need to be rapidly and

effectively addressed.

23.1.2 Techniques and tools

As already been said, DevOps, like agile, has evolved to

encompass many different disciplines, but most people will agree on a

few things: DevOps is a software development practice or a software

development lifecycle (SDLC) and its central tenet is cultural change,

where developers and non-developers all breathe in an environment

where formerly manual things are automated; everyone does what they

are best at; the number of deployments per period increases; throughput

increases; and flexibility improves.

While having the right software tools is not the only thing you

need to achieve a DevOps environment, some tools are necessary. A

key one is continuous integration and continuous deployment (CI/CD).

This pipeline is where the environments have different stages (e.g.,

DEV, INT, TST, QA, UAT, STG, PROD), manual things are

automated, and developers can achieve high-quality code, flexibility,

and numerous deployments.

This subsection describes a five-step approach to creating a

DevOps pipeline, like the one in the following diagram, using open

source tools.

Step 1: CI/CD framework. The first thing you need is a CI/CD

tool. Jenkins, an open source, Java-based CI/CD tool based on the MIT

License, is the tool that popularized the DevOps movement and has

become the de facto standard.

Jenkins is an universal remote control tool that can manipulate

with many different services and tools and orchestrate them. On its

own, a CI/CD tool like Jenkins is useless, but it becomes more

powerful as it plugs into different tools and services. Jenkins is just one

23. SDN in Context of Devops Technology

249

of many open source CI/CD tools that you can leverage to build a

DevOps pipeline. Other open source CI/CD tools shown in Table 23.1.

Table 23.1 - Open source CI/CD tools

Name License

Jenkins Creative Commons and MIT

Travis CI MIT

CruiseControl BSD

Buildbot GPL

Apache Gump Apache 2.0

Cabie GNU

Step 2: Source control management. The best (and probably the

easiest) way to verify that your CI/CD tool can perform some

experience is by integrating with a source control management (SCM)

tool. Why do you need source control? Suppose you are developing an

application. Whenever you build an application, you are

programming—whether you are using Java, Python, C++, Go, Ruby,

JavaScript, or any of the gazillion programming languages out there.

The programming codes you write are called source codes. In the

beginning, especially when you are working alone, it's probably OK to

put everything in your local directory. But when the project gets bigger

and you invite others to collaborate, you need a way to avoid merge

conflicts while effectively sharing the code modifications.

You also need a way to recover a previous version—and the

process of making a backup and copying-and-pasting gets old. You

(and your teammates) want something better.

This is where SCM becomes almost a necessity. A SCM tool helps

by storing your code in repositories, versioning your code, and

coordinating among project members.

Although there are many SCM tools out there, Git is the standard

and rightly so. I highly recommend using Git, but there are other open

https://github.com/jenkinsci/jenkins
https://github.com/travis-ci/travis-ci
http://cruisecontrol.sourceforge.net/
https://github.com/buildbot/buildbot
https://gump.apache.org/
http://cabie.tigris.org/

23. SDN in Context of Devops Technology

250

source options if you prefer. Open source SCM tools shown in Table

23.2.

Table 23.2 – Open source SCM tools

Name License

Git GPLv2 & LGPL v2.1

Subversion Apache 2.0

Concurrent Versions

System (CVS)
GNU

Vesta LGPL

Mercurial GNU GPL v2+

The CI/CD tool can automate the tasks of checking in and

checking out source code and collaborating across members.

Step 3: Build automation tool. Now you can check out the code

and commit your changes to the source control, and you can invite your

friends to collaborate on the source control development. But you

haven't yet built an application.

To make it a web application, it has to be compiled and put into a

deployable package format or run as an executable. (Note that an

interpreted programming language like JavaScript or PHP doesn't need

to be compiled.)

Enter the build automation tool. No matter which build tool you

decide to use, all build automation tools have a shared goal: to build the

source code into some desired format and to automate the task of

cleaning, compiling, testing, and deploying to a certain location.

The build tools will differ depending on your programming

language, but here are some common open source options to consider.

Open source build automation tools are shown in Table 23.3.

Step 4: Web application server. So far, you have a packaged file

that might be executable or deployable. For any application to be truly

useful, it has to provide some kind of a service or an interface, but you

need a vessel to host your application.

https://git-scm.com/
https://subversion.apache.org/
http://savannah.nongnu.org/projects/cvs
http://savannah.nongnu.org/projects/cvs
http://www.vestasys.org/
https://www.mercurial-scm.org/

23. SDN in Context of Devops Technology

251

Table 23.3 - Open source build automation tools

Name License Programming Language

Maven Apache 2.0 Java

Ant Apache 2.0 Java

Gradle Apache 2.0 Java

Bazel Apache 2.0 Java

Make GNU N/A

Grunt MIT JavaScript

Gulp MIT JavaScript

Buildr Apache Ruby

Rake MIT Ruby

A-A-P GNU Python

SCons MIT Python

BitBake GPLv2 Python

Cake MIT C#

ASDF Expat (MIT) LISP

Cabal BSD Haskell

For a web application, a server is that vessel. An application server

offers an environment where the programming logic inside the

https://maven.apache.org/
https://ant.apache.org/
https://gradle.org/
https://bazel.build/
https://www.gnu.org/software/make
https://gruntjs.com/
https://gulpjs.com/
http://buildr.apache.org/
https://github.com/ruby/rake
http://www.a-a-p.org/
https://www.scons.org/
https://www.yoctoproject.org/software-item/bitbake
https://github.com/cake-build/cake
https://common-lisp.net/project/asdf
https://www.haskell.org/cabal

23. SDN in Context of Devops Technology

252

deployable package can be detected, render the interface, and offer the

web services by opening sockets to the outside world. You need an

HTTP server as well as some other environment (like a virtual

machine) to install your application server. For now, let's assume you

will learn about this along the way (although I will discuss containers

below). There are a number of open source web application servers

available, shown in Table 23.4.

Table 23.4 – Open source web application servers

Name License Programming Language

Tomcat Apache 2.0 Java

Jetty Apache 2.0 Java

WildFly GNU Lesser Public Java

GlassFish CDDL & GNU Less Public Java

Django 3-Clause BSD Python

Tornado Apache 2.0 Python

Gunicorn MIT Python

Python

Paste

MIT Python

Rails MIT Ruby

Node.js MIT Javascript

Now the DevOps pipeline is almost usable. Although it's possible

to stop here and integrate further on your own, code quality is an

important thing for an application developer to be concerned about.

Step 5: Code testing coverage. Implementing code test pieces can

be another cumbersome requirement, but developers need to catch any

errors in an application early on and improve the code quality to ensure

end users are satisfied. Luckily, there are many open source tools

https://tomcat.apache.org/
https://www.eclipse.org/jetty/
http://wildfly.org/
https://javaee.github.io/glassfish
https://www.djangoproject.com/
http://www.tornadoweb.org/en/stable
https://gunicorn.org/
https://github.com/cdent/paste
https://github.com/cdent/paste
https://rubyonrails.org/
https://nodejs.org/en

23. SDN in Context of Devops Technology

253

available to test your code and suggest ways to improve its quality.

Even better, most CI/CD tools can plug into these tools and automate

the process. There are two parts to code testing: code testing

frameworks that help write and run the tests (shown in Table 23.5),

and code quality suggestion tools (shown in Table 23.6) that help

improve code quality.

Table 23.5 - Code test frameworks

Name License Programming Language

JUnit Eclipse Public License Java

EasyMock Apache Java

Mockito MIT Java

PowerMock Apache 2.0 Java

Pytest MIT Python

Hypothesis Mozilla Python

Tox MIT Python

Table 23.6 - Code quality suggestion tools

Name License Programming Language

Cobertura GNU Java

CodeCover Eclipse Public (EPL) Java

Coverage.py Apache 2.0 Python

Emma Common Public License Java

JaCoCo Eclipse Public License Java

Hypothesis Mozilla Python

https://junit.org/junit5
http://easymock.org/
https://site.mockito.org/
https://github.com/powermock/powermock
https://docs.pytest.org/
https://hypothesis.works/
https://github.com/tox-dev/tox
http://cobertura.github.io/cobertura
http://codecover.org/
https://github.com/nedbat/coveragepy
http://emma.sourceforge.net/
https://github.com/jacoco/jacoco
https://hypothesis.works/

23. SDN in Context of Devops Technology

254

Name License Programming Language

Tox MIT Python

Jasmine MIT JavaScript

Karma MIT JavaScript

Mocha MIT JavaScript

Note that most of the tools and frameworks mentioned above are

written for Java, Python, and JavaScript, since C++ and C# are

proprietary programming languages (although GCC is open source).

Now that you've implemented code testing coverage tools, your

DevOps pipeline should resemble the DevOps pipeline diagram shown

at the beginning of this tutorial.

Optional steps. Containers. As mentioned above, you can host

your application server on a virtual machine or a server, but containers

are a popular solution. The short explanation is that a VM needs the

huge footprint of an operating system, which overwhelms the

application size, while a container just needs a few libraries and

configurations to run the application.

There are clearly still important uses for a VM, but a container is a

lightweight solution for hosting an application, including an application

server. Although there are other options for containers, Docker and

Kubernetes are the most popular.

Optional steps. Middleware automation tools. Our DevOps

pipeline mostly focused on collaboratively building and deploying an

application, but there are many other things you can do with DevOps

tools. One of them is leveraging Infrastructure as Code (IaC) tools,

which are also known as middleware automation tools. These tools help

automate the installation, management, and other tasks for middleware

software.

For example, an automation tool can pull applications, like a web

application server, database, and monitoring tool, with the right

configurations and deploy them to the application server. Several open

source middleware automation tools are presented in Table 23.7.

https://github.com/tox-dev/tox
https://jasmine.github.io/
https://github.com/karma-runner/karma
https://github.com/mochajs/mocha

23. SDN in Context of Devops Technology

255

Table 23.7 – Open source middleware automation tools

Name License

Ansible GNU Public

SaltStack Apache 2.0

Chef Apache 2.0

Puppet Apache or GPL

This is just the tip of the iceberg for what a complete DevOps

pipeline can look like. Start with a CI/CD tool and explore what else

you can automate to make your team's job easier.

23.2 DevSecOpS

23.2.1 Features and purposes

The development of information technologies in the end of the

past - the beginning of the present centuries has led to the emergence of

a new direction in science - information security. This issue has been

devoted to monographs, scientific articles by many scientists. The

works have shown the dependence of information security on time and

presented its mathematical model. Further development of information

security was cybersecurity (CS), which replaced it in information

technology. One of the main preventative methods of providing CS is

to find and eliminate various vulnerabilities that arise in the process of

software development. Vulnerabilities allow for various attacks that can

be used to access websites of different companies and agencies, credit

card information, personal data of citizens, etc.

An analysis of recent research and publications indicates that over

the last 2 years, about 216 unique incidents have been identified among

ordinary users related to cyberattacks (accounting for 26% of the total).

The most stolen data is medical information and payment card details

Software applications are complex and can potentially have many

different security issues. Problems range from bad code to improperly

configured servers and all hardware in between. There are currently

https://www.ansible.com/
https://www.saltstack.com/
https://www.chef.io/
https://puppet.com/

23. SDN in Context of Devops Technology

256

many ways to test the security of a software product with its advantages

and disadvantages.

Despite this, the problem of hacking and hacking is still relevant

and, unfortunately, is picking up at the same speed with which

information technology is evolving. One way to solve this problem is to

create a DevSecOps software. More precisely, it is not a software

product, but a new ideology in which every programmer is responsible

for the safety of their product.

The purpose of DevSecOps is to bring developers of all areas to a

high level of professionalism in the field of security in a short period of

time. DevSecOps aims to ensure that every security flaw, upon

detection, is timely identified and recorded, autotested, and added to a

permanent build process to close the most urgent and important security

gaps.

Figure 23.2 shows how DevSecOps integrates into software

development. DevSecOps basic concepts will be presented the analysis

of the technology of using the DevSecOps software for security testing

in the form of approaches or ideas used to achieve this goal.

Figure 23.2 - DevSecOps integration into software development

lifecycle

23.2.2 Approaches

Approache 1. “Automate {in origin “kill”} them all”. Speed is one

of the main strengths of DevOps. In the context of continuous

integration and continuous deployment (CI / CD), the ability to quickly

23. SDN in Context of Devops Technology

257

get a working software product. For the sake of security, to be part of

this workflow, it must be automated. Security controls and tests must be

implemented early on and throughout the development lifecycle, and

they should be driven automatically as developers introduce new

versions of the code 50 times a day for a single application. Automation

has become a key feature of DevSecOps in integrating with the very

mature DevOps practice. This is a great advantage over the Waterfall

Development Model, where automatic safety tests are launched just

before they are released. More and more tools have emerged with a

wide range of security analysis and testing capabilities throughout the

software development lifecycle, from source code analysis to post-

deployment integration and monitoring.

These include Checkmarx, Splunk, Contrast Security, Sonatype,

Tanium, InSpec, FireEye, and Metasploit. You need to automate

thoughtfully. Trying to run automatic testing of the entire program

source code every day can be time consuming and you may lose track

of daily changes. Consideration should also be given to implementing

automated Dynamic Application Security Testing (DAST) in the

software development lifecycle. Unlike static analysis that focuses on

search potential security issues in the code itself, DAST looks for real-

time vulnerabilities while the application is running. DAST Automation

scans and runs tests against recent or new code changes to identify

security vulnerabilities listed in the Open Web Application Security

Project (OWASP) list the most common flaws, such as SQL injection

errors, that can be skipped during static analysis of a program code that

can be skipped during static analysis of applications code.

Approach 2. Checking the vulnerability of the generated code.

Despite growing concern about the risks of using third-party software

components, companies use software with open source applications. A

separate audit conducted by the company in more than 1,000

commercial applications showed that 96% of them include open source

components. More than 6 in 10 applications contain known security

vulnerabilities in these components, and some have been there for four

years. Despite this, only 27% of respondents said they have processes

for automatically identifying and tracking patches for known

shortcomings in open source software.

Understanding the use of open source is the key to more extensive

adoption of DevSecOps methods. Developers often do not have time to

23. SDN in Context of Devops Technology

258

view the code in their open source libraries or read documentation, so

automatic processes for managing open source and third-party

components are a major requirement for DevSecOps. During the work

it is necessary to monitor the use of open source contextual and other

vulnerabilities in the code and what impact these vulnerabilities may

have on the dependent code. Code dependency checks are fundamental

to DevSecOps, and utilities like OWASP Dependency-Check do not

allow you to use code with known software vulnerabilities. OWASP

works by testing code and dependent open source or component

libraries to find out any key disadvantages of OWASP. It works with a

constantly updated database of all known open source software

vulnerabilities.

Approach 3. Trusting the Tool SAST tools allow developers to get

instant feedback on defects that can cause security issues while writing

code, test the code as they write it, to get instant feedback on defects

that can cause security issues.

These tools help developers identify and eliminate potential

security vulnerabilities during the normal workflow, and should

therefore be an important component of DevSecOps practice. However,

the key to implementing such tools is to think little. Often when a

security team implements a static test tool in the CI / CD pipeline, the

team tends to include checks on a whole host of security issues and this

ends up with other problems that have the difficulty of supporting such

processes. Instead, it is much better to include one or two security

checks at a time and get developers to use the idea of security rules in

the workflow. For example, with the implementation of the SAST tool

in development, it is possible to start by including a set of tests to

capture SQL injection errors.

As soon as developers find out how the tool helps them catch

coding errors, they are more likely to work with it. "Before you

incorporate more and more rules, you need to build trust in the tool."

Approach 4. Some tools may be more useful than others. Every

day, there are new tools needed for security testing, so there are several

key considerations when buying them:

 - Security products should be able to integrate into the

development pipeline and allow the development and security team to

work together, not just throwing things at the fence to each other. The

security testing product should make it easy for developers to quickly

23. SDN in Context of Devops Technology

259

initiate testing and get results without having to leave their existing

toolkit;

- Other key requirements are speed and accuracy. Security must

work quickly. But false positives can be an absolute killer in a DevOps

environment;

- A tool that requires a developer or security engineer to take a

timeout to verify test results is of little help. The results generated by

the tools should be fast, accurate and immediate. Tools are needed to

help developers identify and prioritize vulnerabilities as they write

software. Code vulnerability identification should be based on an

understanding of the software itself, as opposed to comparing it with

signatures.

Approach 5. Threat modeling is difficult but still necessary It is

recommended to use threat modeling and risk assessment before

moving to DevSecOps. A threat modeling exercise can help a security

organization better understand asset threats, asset types and

sensitivities, existing asset security controls, and any gaps in controls

that need to be addressed. Such assessments can help identify

deficiencies in application architecture and design would miss other

security approaches.

Doing threat simulation in a DevOps environment can be tricky

because it can slow down the speed of the CI / CD process. You cannot

automate threat mapping processes in the same way as for any other

DevOps boundary. value for overall success DevOps efforts because it

causes developers to think about their software from the perspective of

an attacker.

Approach 6. Teaching Developers to Secure Coding. There may

be some problems with using DevSecOps. One of the biggest is simply

convincing developers of the feasibility of taking this approach. Getting

the investment and time it takes to prepare a development team for

secure coding is another big problem. Developers often don't know that

they are coding in a dangerous way. developers. Many DevSecOps

methods and tools are still being developed, and many are still

unknown in DevSecOps technology. But it is obvious that in a world of

continuous integration and rapid release cycles, it is no longer possible

to ignore application security. Advantages and disadvantages of

DevSecOps. It's easy to spell out DevSecOps's benefits - automating

processes from the very beginning of the programming process reduces

23. SDN in Context of Devops Technology

260

the likelihood of incorrect administration and errors that often lead to

downtime or open up opportunities for attacks. Automation also

eliminates the need for IB specialists to configure the console manually.

Thus, security features such as identity management, access

(IAM), firewall operation, and vulnerability scanning are

programmatically activated in the DevOps process. As a result of this

approach, teams of ISPs can focus on policy setting. Experts estimate

that 80% of development teams will use DevSecOps by 2021. Figure

23.2 shows how DevSecOps integrates into application development.

One of the major benefits of DevSecOps is that every team involved in

development is responsible for security. This approach leads to the

creation of special tools aimed at enhancing security at different stages

of the DevOps pipeline. A major drawback is the fact that the number

of security professionals well-versed in DevSecOps still remains

depressingly small. To train such professionals, it is necessary to study

courses that are exotic to most programmers. CS specialists focus on

endpoint security, so they are not particularly interested in DevSecOps.

23.3 SDN and DevOpS

23.3.1 SDN and DevOpS interconnection

The introduction of Software Defined Networking (SDN) and

Network Functions Virtualization (NFV) has ushered in a new era of

innovation that enables communication service providers (CSPs) to

create highly automated networks and introduce new customized

services. Leading CSPs recognize that innovation does not only come

from within; they are constantly looking outside the organization for

partners with whom they can jointly capitalize on new market

opportunities. An innovative professional service partner can help CSPs

take advantage of these immediate opportunities while facilitating a

long-term transformation strategy to achieve a sustainable competitive

advantage.

The evolution of virtualization technology has disrupted traditional

service delivery. Alternative cloud service or Over-The-Top (OTT)

providers such as Skype and Line 2 are leveraging these virtualization

technologies to rapidly roll out a new platform and services. As

enterprises and consumers shift their applications to a cloud-based

environment, these nimble OTT players, supported by automated and

23. SDN in Context of Devops Technology

261

programmatic platforms, can swiftly scale up new services to address

unanticipated demands as well as “fail fast” by almost instantaneously

scaling down unsuccessful services. Rapid innovation has slowly but

surely rendered conventional network connectivity a commodity.

Telecommunication networks are migrating from traditional

hardware and appliance-centric deployments to cloud-based

deployments, with software as the critical component of all network

functionality. At the heart of this revolution are two technologies:

Network Function Virtualization (NFV), and Software Defined

Networking, both of which aim at virtualizing network applications as

well as the network connectivity. Both these technologies, and the

interaction between them, have been undergoing trials over the past few

years, and new standards as well as architecture options have begun to

emerge.

While most of the initial focus has centered on defining the

solution architecture, the stakeholders responsible for operating these

networks, so, network and IT operations teams, need to still iron out

operational aspects which are critical to seamless delivery of end user

services. Migration from network element-centric to software centric

operations will drive fundamental changes in the network operating

model across multiple dimensions, from tighter integration across

network, IT, and architecture teams to new processes, and tools to

manage the network.

In this point of view, we present some of the leading practices for

software-centric network operations, based on successful early stage

implementations, that can help Communications Service Providers

(CSPs) effectively manage their services and end user experience

within the NFV and SDN domain. Key drivers for migration to NFV

and SDN are presented on Figure 23.3.

23. SDN in Context of Devops Technology

262

Figure23.3 - Key drivers for migration to NFV and SDN

Changing business dynamics and operational challenges are

driving the shift to SDN/ NFV.

From a CSP perspective, while user data traffic has been growing

exponentially with the increase in OTT and other data-centric services

driving high capital investments, revenues have not kept pace. NFV and

SDN are complementary technologies which leverage cloud

infrastructure and can help both increase revenues with the rapid

introduction of new services, and reduce expenses by shifting from

expensive proprietary hardware to lower cost commodity hardware.

With NFV, functionality such as firewalls, load balancers, deep

packet inspection and IP Multimedia System (IMS) nodes which were

traditionally implemented with hardware-based appliances, are

23. SDN in Context of Devops Technology

263

delivered as software-based Virtual Network Functions (VNFs) on a

carrier-grade cloud infrastructure. SDN, on the other hand, simplifies

the connectivity between physical and virtual network elements at layer

2/3 via network virtualization protocols such as OpenFlow.

NFV and SDN together offer an elegant solution for CSPs looking

to address the challenges driven by business dynamics and operational

considerations for today’s telecom networks. Some key underlying

industry and business drivers for migration towards NFV and SDN are

shown in Figure 23.4.

NFV and SDN will introduce a radical shift in telecom network

architecture.NFV and SDN principles can be applied to most telecom

access and core level network elements. Transport elements such as

routers and switches in both the Local Area Network (LAN) and Wide

Area Network (WAN) network segments can be replaced by

commodity switches supporting SDN approaches such as OpenFlow.

Similarly, most hardware-based elements such as IMS nodes,

Evolved Packet Core (EPC) platforms and Content Delivery Network

(CDN) platforms, can all be virtualized on the cloud infrastructure with

NFV. CSPs are also exploring alternatives to migrate hardware-based

Customer Peripheral Equipment (CPE), such as Set Top Boxes (STBs),

to NFV based principles.

As illustrated in Figure 23.4., in a completely virtualized

environment, most services would be based on a common cloud

platform which can deliver Telco-grade capabilities.

However, the migration path towards the network shown in Figure

23.4. is likely to be a phased one, primarily governed by business

decisions and investment lifecycles.

Operations teams will be faced with the reality of needing to

manage hybrid deployments, including both physical and virtual

network elements, for an extended period of time, and need to be

equipped with the necessary tools, processes, and skills to do so.

23. SDN in Context of Devops Technology

264

Figure 23.4 - Telecom Architectur e shift towards a NFV/SDN

Environment

Migration to the NFV/SDN architecture will impact most

operations functions

With the migration of networks to a virtualized and software-

centric model, current operations functions and processes need to

undergo major changes to ensure delivery of carrier grade performance.

Key considerations for effective operations in NFV/SDN networks

include:

• Service strategy and design needs to maintain status quo in terms

of operational performance for traditional services being migrated to

NFV/SDN.

• Carrier grade performance needs to be ensured by leveraging

features such as dynamic creation and migration of virtual network

functions to meet availability requirements.

• Operations needs to migrate to “management by exception”

wherein most common errors and performance degradations are

addressed via automated self-healing and self-optimization rules.

• Critical functions such as fault, outage, and performance

management need to be supported with smooth handoffs across

different teams which maintain physical and virtual network resources.

• The skillset of operations teams needs to be expanded to include

scripting capabilities (or their equivalent via GUI-based tools) to be

able to effectively create “recipes” for managing software VNFs.

23. SDN in Context of Devops Technology

265

• A DevOps-based model which drives closer coordination

between operations and development teams needs to be introduced to

improve service agility and quality.

The role of operations spans across the entire service lifecycle, and

each of these stages is impacted by the introduction of NFV and SDN

based networks. The entire operations model including processes, tools

and technology, as well as people and organization needs to be

redesigned for each functional area within Service Design and

Fulfillment, Service Operations and Readiness, as well as Service

Assurance, as shown on Figure 23.5.

Figure 23.5 - Functional Domains by Service Lifecycle

23.3.2 Leading practices for SDN and DevOps

Leading practices for service fulfillment. Activation and

provisioning. For an ideal service launch experience, it is necessary to

ensure that setup and end-to-end orchestration via Management and

Orchestration (MANO) happens without any errors. This can be

ensured by leveraging the following practices:

• Activation and provisioning needs to be enabled via an intuitive

portal which provides a simplified workflow, and pre-defined templates

23. SDN in Context of Devops Technology

266

for standard activities such as service definition and composition,

service activation, as well as service modification.

• Provisioning should be based on industry standard protocols such

as YANG, NETCONF, and TOSCA – which enable end-to-end

chaining of components from multiple vendors in a seamless manner.

Newer protocols also include support for rollback, to enable a revert to

the original configuration in case any step of the end-to-end

provisioning fails.

Leading practices for operations support and readiness.

Change management. One of the key benefits of implementing a

SDN and NFV based network is increased agility. This is, in part,

enabled by the fewer errors in change management because fewer

manual steps are needed for sign-off and change implementation. The

following practices can help in creating an automated change

management process, which speeds up realization of the approved

changes:

• A software-based workflow should be implemented to acquire

approvals for changes, and automatically effect approved changes via

the centralized orchestrator.

• Logically isolated test environments, built using SDN, can

provide the ability to simulate multiple What-If scenarios and quantify

impact of planned changes in a staging environment.

Inventory Management. In the NFV and SDN world, inventory

management needs to be considered at the service, virtual network

application, and resource level (Virtual Machines (VM) and physical

server). With a highly dynamic virtual environment, one click access to

the most up to date inventory becomes a necessity. To support these

requirements, the following leading practices need to be adopted:

• Physical inventory data needs to be enhanced to include VNF and

virtual network details in order to build an integrated view of utilization

of logical and virtual resources across the infrastructure.

• A software repository will be needed to maintain details such as

package versions and license usage.

• Auto discovery algorithms and version controlled archival

systems need to be implemented which can help establish a real-time

topology view and inventory reporting system. This reduces

troubleshooting issues by providing the ability to identify the exact

23. SDN in Context of Devops Technology

267

topology at the time of an event.

DevOps. To achieve improved multi-service release stability and

greater deployment agility, network changes will need to be managed in

a methodical and consistent way, while eliminating need for

device/hardware specific scripts, and reliance on specific team

members. To meet this requirement in a virtualized and software

defined network infrastructure engineers need to apply DevOps

principles pioneered in the enterprise cloud environment. Some leading

DevOps practices are as follows:

• The network’s tolerance for frequent changes needs to be

increased by automating testing and deployment of changes across

multiple non-production and production environments.

• Creating an automated test suite allows changes to be verified

and risks to be identified through event driven triggers across multiple

environments, thus, avoiding last-minute surprises.

• Operations is deeply involved with solution design and testing of

end-to-end capabilities prior to the software drops in the production

environment. Feedback from operations on production networks is

tracked, maintained, and rolled into subsequent product sprints.

Leading practices for service assurance.

Performance management. For effective management of services

in the virtualized environment where performance is highly dependent

on underlying cloud infrastructure, self-learning and predictive

techniques must be developed to manage end-to-end service

performance by intelligently correlating inputs at all levels and across

locations. This can be achieved by adopting some of the leading

practices as outlined below:

• New or revised KPIs/KQIs e.g., Infrastructure Response Time,

VNF Contention Analysis, and sophisticated algorithms need to be

defined that can correlate inputs at all levels and provide insightful

performance views across VNFs and virtual infrastructure.

• Predictive analytics needs to be leveraged to proactively manage

resources based on predicted faults, dynamically update policies and

rules based on real-time traffic characteristics. This can help minimize

the occurrence of issues across the virtualized infrastructure.

• Self-optimization capabilities need to be introduced in

performance management modules which can optimize configuration

23. SDN in Context of Devops Technology

268

based on current network performance e.g., scale up VMs, add new

VNF instances for load balancing, configure new routes between VMs,

etc..

Fault management. Early fault detection and mitigation is key to

deliver carrier grade availability and improve end user customer

experience. With the ability to proactively correlate physical and virtual

level faults at a service level and performing VNF/network topology

reconfiguration, Mean Time To Repair (MTTR) can be greatly reduced.

Leading practices for proactive fault management include:

• The service model should be leveraged to identify all

components and links impacted by a particular fault. This can be done

by using the YANG model to identify which components of a service

are impacted, trigger policy based alarms, and suppress duplicate

alarms.

• Policy driven self-healing strategies need to be implemented to

route around faults identified via monitoring of various instances of a

VNF across VMs and performing distributed failure checks.

SLA/OLA management. To be able to maximize benefits from the

use of virtualization, stringent Service Level Agreements (SLAs) need

to be enforced onto the groups providing operations support for the

underlying cloud infrastructure. This is needed to ensure that the

carrier-grade requirement for availability (e.g., 5 nines) and other

regulatory (e.g., NEBS) compliance requirements are met.

Additionally, Organization Level Agreements (OLAs) also need to

be updated to encompass all types of VNFs hosted in the network.

Implementing the following practices will ensure effective SLA/OLA

management:

• Carrier-grade SLA/OLAs need to be enforced on Commercial off

the Shelf (COTS) hardware and software components to ensure that

off-the-shelf solutions can support carrier-grade network requirements.

These SLAs and OLAs also need to be enforced across organizations

supporting the underlying platform on which network services are

provided.

• A common SLA/OLA framework needs to be established with all

vendors providing software-based VNFs or controllers. While the

framework can be used to establish implementation guidelines, it must

be flexible enough to support different requirements based on VNF

type.

23. SDN in Context of Devops Technology

269

• SLAs and OLAs need to include key operational parameters such

as service response time and scalability, packets lost, etc. and not be

limited to the time in which an assigned ticket is acknowledged. End-

to-end Service Management.

To manage and meet expectations on a per-customer basis for

multiple services the focus needs to shift from merely monitoring

network and node level KPIs, and turn towards analysis and correlation

of performance at every layer of the network stack. The following

practices will enable this correlation:

• End-to-end) with integrated dashboards which provide the

ability to drill down along the VNF chain all the way to the underlying

virtual and physical resources and help localize issues.

• Cross domain correlation based on metrics for service

accessibility, integrity, and retention which are built on new/revised

KPIs/KQIs with inputs from VNFs, virtualized infrastructure, and

network layers.

So, the evolution of virtualization technology has disrupted

traditional service delivery. Alternative cloud service or OTT providers

such as Skype and Line 2 are leveraging these virtualization

technologies to rapidly roll out a new platform and services.

As enterprises and consumers shift their applications to a cloud-

based environment, these nimble OTT players, supported by automated

and programmatic platforms, can swiftly scale up new services to

address unanticipated demands as well as “fail fast” by almost

instantaneously scaling down unsuccessful services. Rapid innovation

has slowly but surely rendered conventional network connectivity a

commodity.

Transforming to a Virtualized Environment. To remain relevant in

today’s market and avoid marginalization, CSPs must leverage the

latest SDN and NFV innovations to provide virtualized end-to-end

solutions that immediately address customers’ evolving requirements.

CSPs also need to initiate a foundational transformation to build a

sustained long-term competitive advantage. It can be defined as a

foundational transformation in the business model, service development

processes, skills, and culture.

Business Model Evolution. Traditional network infrastructures are

designed and deployed in a rigid and complex fashion, with hardcoded

workflows and limited flexibility. Service deployment can take from 12

23. SDN in Context of Devops Technology

270

to 18 months, require large upfront capital investments, and demand

significant resources to integrate, test, and deploy. As a result, CSPs

have traditionally taken a risk-averse approach to new service

deployment, limiting their ability to respond to market changes and

exploit new opportunities.

A virtualized network based on SDN and NFV technologies

transforms this business model and disrupts traditional network

economics. Virtualization technologies can significantly reduce upfront

capital expenses (CapEx), while a highly scalable and flexible IP

infrastructure layer can be optimized instantaneously for efficiency,

lowering operational expenses (OpEx). An automated service

orchestration layer improves time to market, enabling CSPs to quickly

capitalize on new market opportunities with new services.

This increased agility enables CSPs to transform their business,

allowing them to offer new services and data analytics as part of a

platform-based, on-demand, and pay-as-you-grow model. Lower

CapEx and OpEx also allow CSPs to effectively expand their service

footprint and target new customer segments and geographies. The

resulting expansion of the service portfolio increases customer

relevance and drives profitability.

DevOps Practice and Agile Development Methods. Service

development has traditionally relied on a waterfall process comprised

of multiple stages, each with highly defined requirements that must be

completed sequentially. Features are predefined and functionalities are

delivered all at once.

Needless to say, traditional service development is a lengthy

process, compounded by the need to perform time-consuming manual

testing over a complex hardware-centric infrastructure.

As a result, by the time the service or application is finally

delivered, the market has moved on and customer requirements have

evolved.

The emergence of DevOps, a new collaborative practice,

establishes a process that involves developers and operational

organizations collaborating, facilitating an exchange of ideas, and

expediting decision making processes that lead to real action.

Agile development, on the other hand, is a software development

methodology involving cross-functional teams defined within the

DevOps process. The agile development approach promotes service

23. SDN in Context of Devops Technology

271

flexibility, where software development focuses on evolutionary

development, early delivery of incremental features, and continuous

improvements.

Moving towards a combined DevOps practice and an agile

development methodology enables CSPs to dramatically accelerate the

development process, reducing service delivery from months or years

to mere days - all while continuously delivering relevant innovation.

23.4 DevOpS and IoT

23.4.1 General

It’s increasingly apparent that the development of software for the

Internet of Things (IoT) and the management of those systems once

they are in operation cannot be separated making IoT software an area

ripe for “DevOps.” More than a buzzword, DevOps has the potential to

help accelerate system development, ensure system quality, and

optimize system reliability in the field.

DevOps is already being used in the IoT enterprise systems where

the business logic resides. This paper sets forth six sound reasons why

DevOps should, and likely will, become standard practice in the

development and deployment of software for gateways and edge

devices as well, and outlines a technology infrastructure that can help

organizations implement IoT DevOps more quickly and easily.

The integration of development and operations, dubbed “DevOps,”

is a hot topic in IT circles—so hot, in fact, that a standard definition, let

alone formalized DevOps structures and best practices, is yet to emerge

. One source characterizes DevOps as a “culture, movement, or

practice” emphasizing collaboration between developers and IT

operations teams with the goal of creating an “environment where

building, testing, and releasing software can happen rapidly, frequently,

and more reliably.”

Note that this definition refers to “culture” rather than

organization. While it’s true that DevOps may ultimately require an

organizational change, it first requires a cultural change to break down

silos that separate those who build software and systems from those

who implement and operate them. (The evolution of DevOps may be

likened to that of agile development, which began as a movement with

23. SDN in Context of Devops Technology

272

the “Agile Manifesto” and is still thought of more as a set of principles

than a process).

For developers of embedded systems, the concept of DevOps may

at first seem foreign. Historically, the development team built the

software (or a device) and handed it off to another team for release and

support. But in IoT that model is a recipe for something far short of

success, if not failure.

The reliable performance of an IoT solution requires a constant

feedback loop, regular monitoring, speedy issue resolution, and

frequent upgrading. Internet connectivity creates the opportunity for

constant infusion of innovation into the system, without waiting for the

next “big bang” release. It’s a process of continuous learning that

necessarily requires developers and operators to collaborate closely

every day.

Agile development is the forerunner to DevOps. In agile

development, designers, testers, developers, and integrators merge into

cross-functional teams that have end-to-end responsibility for specific

functions or subsystems (see Figure 23.6).

That responsibility includes delivery, which ideally can be

automatic once the software passes internal testing and quality

assurance. Automation of delivery makes possible the concept of

continuous deployment, which increasingly goes hand in hand with

agile methodologies.

If your organization practices agile development and continuous

deployment, you are on the evolutionary path to DevOps. You may

even be practicing DevOps in an ad hoc fashion without realizing it.

The next step is to formalize a DevOps organizational process and

structure, supported by technology that integrates the building, testing,

deployment, and management of IoT applications on a single platform

with a high level of automation. But before we discuss how you do it,

let’s be clear about why you should.

23. SDN in Context of Devops Technology

273

Figure 23.6 - Functional vs. cross-functional organization

23.4.2 Reasons DevOps matter in IoT

Six reasons DevOps matters in IoT. DevOps has already gained a

foothold at the enterprise level. Witness the social media networks or

video or music streaming services that are constantly pushing new

content to users. Or consider the mobile device makers and application

providers that make new releases of operating systems and other apps

available for download on a regular basis. Now, the next frontier for

DevOps is IoT, specifically the edge devices (the “things” in the

Internet of Things) that perform the IoT system operations and feed

data back to the enterprise. Here’s why:

• The evolution effect: DevOps is simply bound to happen, in

some shape of form, as the next step in the evolution from agile

development to continuous deployment. Organizations that embrace

DevOps and formalize it through integrated, cross functional teams are

likely to have a decided advantage over those that do not.

• The spreading effect: If software on enterprise servers is being

updated regularly or continuously, the systems that are connected to

those servers and dependent on that software will likely require

frequent updating as well. At some point, teams that develop the

enterprise software will expect faster release cycles in the other parts of

connected systems.

23. SDN in Context of Devops Technology

274

• The infrastructure in place: With systems now connected via the

Internet and the cloud, it’s possible to automatically deploy and

regularly upgrade software in multiple field devices remotely.

• Software-defined “anything”: Increasingly, it is the software

deployed on a device (regardless of the hardware) that differentiates it

and defines its functionality. That means that when functionality needs

to be updated, it is more often going to entail a software update rather

than an electrical or mechanical modification.

• New business models and revenue streams: The big promise of

IoT is that it makes possible new business models and sources of

revenue that couldn’t otherwise exist. The ability to constantly deliver

new software updates makes it possible to sell services that generate

continuous revenues, rather than simply the one-time sale of the

underlying product.

• Greater productivity and cost-efficiency: A process that

accelerates development cycles without compromising quality through

more effective collaboration is simply a better, faster, smarter way to

work—with the potential to drive down operating costs.

The case for evolving DevOps from enterprise systems to IoT edge

devices is fairly compelling. IoT application and device developers are

under enormous pressure to deliver quality solutions and meet tight

time-to-market demands. Because IoT systems may be expected to

perform for many years, development and operations teams must work

together to plan for their entire lifecycle, from design through end-of-

life. Companies that can meet these challenges stand to gain a

significant competitive advantage—and a transition to a formalized

DevOps organizational structure would seem to be the answer for

adapting to this new environment.

So why isn’t it happening more quickly? Let’s look at some of the

obstacles and challenges to DevOps implementation.

Overcoming the obstacles. Change is rarely easy, and instituting

DevOps is no exception. Organizations are likely to encounter several

obstacles in the transition.

• Cultural and organizational change is difficult: A transition to

DevOps entails overcoming years of ingrained cultural perceptions and

behavior. Changes in reporting relationships, responsibilities, and

accountabilities are bound to be a bit rocky. An organization must

recognize the need to change and then build the processes and systems

23. SDN in Context of Devops Technology

275

necessary to accomplish the DevOps vision.

• DevOps is inherently difficult at the device level: Unlike the

enterprise software environment, where server hardware is fairly

standardized, IoT systems can be very large, unique, and complex, with

a wide variety of hardware platforms. Where enterprise systems have

built-in redundancy, there is typically very little redundancy for

software embedded in field devices. Reducing the risk of costly failure

requires exhaustive production-level testing and quality assurance,

which lengthens development cycles.

• Reliability is paramount: When software is continuously

deployed, it has to work as promised. IoT solutions have very high

demands for reliability, quality, security, and safety. Correcting

problems in deployed software can be extremely cumbersome and

inefficient, and the business risk is high if the manufacturer has a

contractual obligation to ensure performance as expected. Quality

assurance is an essential ingredient of any DevOps model.

There are few tools that actually support the DevOps paradigm,

which calls for agile code sprints, automated testing, fast and automated

feedback loops, and collaborative teams with a high degree of

autonomy and communication. What’s needed is a clear path between

development platforms and field systems, so that DevOps teams can

monitor system health, detect potential issues, and act on them before

they become problems.

How technology can enable DevOps. DevOps in IoT is not

inevitable. It requires commitment, collaboration, communication, and

a willingness to change. It can, however, be made easier with

technology that integrates system development, testing and debugging,

deployment, monitoring, and management on a single platform. Unlike

conventional development tools designed to support functional

organizations working in horizontal layers, an integrated approach

would enable true cross-functional collaboration in a vertical model

(refer to Figure 23.6).

It would allow system developers and those responsible for

operationalizing the software to work as a coordinated team in a

centralized, cloud-based environment, thereby accelerating the delivery

of applications with full quality assurance and enabling effective

troubleshooting of systems in the field.

It’s important to think of DevOps not simply as the merger of

23. SDN in Context of Devops Technology

276

development and operations, but as the intersection of development,

quality assurance (QA), and operations (see Figure 23.7) - QA being

the essential step that ensures a system will work properly before going

into operation.

Figure 23.7 - DevOps as the intersection

of development, quality assurance, and operations

Helix Cloud maps to this three-stage DevOps model through the

integration of three core components:

• Wind River Helix App Cloud serves the development side of

DevOps. It equips application developers with ready-to-use tools and

software development kits (SDKs) for any hardware variant. App

Cloud makes it possible to easily build applications independent of

device operating system and hardware complexity.

By providing developers with the appropriate tools and target

systems, App Cloud helps mitigate integration issues between

application and platform software and cut down on team handovers. As

a cloud platform, it also allows anytime, anywhere access to tools and

enables large, geographically dispersed development teams to

collaborate across borders and time zones.

• Wind River Helix Lab Cloud addresses the testing and quality

assurance aspect of DevOps. It allows instant access to virtual hardware

of whole systems at representative scale, enabling teams to use full-

23. SDN in Context of Devops Technology

277

system simulation for testing and QA of complex and large-scale IoT

systems. A simple login provides any engineer with access to the cloud-

based virtual lab. Using on-demand simulation software as a

complement to hardware, teams can automate testing in entirely new

ways and create any number of virtual target systems for parallel

testing.

This significantly shortens the cycle between application

development and system testing. With Lab Cloud, teams can stage and

test systems at representative scale in a pre-production environment so

they can move into production with confidence in system continuity.

• Wind River Helix Device Cloud is the platform for managing and

operating devices from the cloud—the “bridge” between development

and operations. It enables operators to safely and securely update,

monitor, service, and manage devices in the field. Device Cloud

automatically collects and integrates data from hundreds or thousands

of disparate devices, machines, and systems, enabling operators to track

device status and content, share data among engineers, and proactively

determine when updates are needed.

Collectively, the Helix Cloud suite enables organizations to

transition into a DevOps team structure. Specifically, it:

• Facilitates a new paradigm of “always connected” collaboration

that isn’t restricted by geography

• Helps break down the silos that separate those who develop

software and systems from those who deploy and operate them,

enabling teams to work cross-functionally in a collaborative spirit and

making the release of software fast, reliable, and automated

• Allows testing of software at scale before deployment as well as

proactive management of field devices, which together enable

continuous quality assurance

So, connected IoT edge devices have a lifecycle beyond “deploy,

break and fix, and retire.” Connectivity creates the opportunity to

continuously infuse incremental innovation across the system lifecycle.

DevOps puts organizations in the best position to capitalize on that

opportunity.

As the lines between software creation and operation begin to

disappear, so too must the organizational lines that separate system

developers from system operators. The DevOps concept has been

proven at the enterprise level and is evolving toward gateways and edge

23. SDN in Context of Devops Technology

278

devices as a means to meet the unique challenges of developing and

managing IoT systems. While there are obstacles to overcome, both

cultural and practical, a technology platform that integrates system

development, testing and QA, deployment, and management can

provide the necessary infrastructure for implementing DevOps,

empowering cross-functional teams to accelerate system development,

ensure system quality, and optimize system reliability in the field.

23.5 Work related analysis

The section is based on analysis of publications and materials of

leading companies in DevOps methodology, SDN and IoT.

A few USA and EU universities including ALIOT project partners

conduct research and implement education MSc and PhD modules

related to DevOps and connection of this methodology with SDN and

IoT. In particular, the following courses and programs have been

considered:

- Washington University in St. Louis [12];

- Coimbra University, Portugal: IoT course for MSc [22]. The

courses represents a new stage in the digital evolution and focuses on

the Internet of Things for smart transport and cities, and the

development of tools to transform city infrastructure;

- KTH University, Sweden: three MSc programs including IoT

related topics in Information and Network Engineering [23] and

Communication Systems [24];

- Newcastle University, United Kingdom: MSc Programme on

Embedded Systems and Internet of Things (ES-IoT) MSc [25].

Conclusion and questions

The improvements assured by implementation of agile models of

software and systems development are moving downstream toward IT

operations with the evolution of DevOps methodology. In order to meet

the demands of an agile business, IT operations need to deploy

applications in a consistent, repeatable, and reliable manner. This can

only be fully achieved with the adoption of automation.

Widespread platforms, like AWS, MS Azure, Google Cloud, etc.

have been analysed. These solutions support numerous DevOps

principles and practices that IT departments can capitalize on to

improve business agility.

23. SDN in Context of Devops Technology

279

This section has been dedicated to analysis of DevOps principles

and practices supported on the well-known platforms, like the

following:

- AWS,

- MS Azure,

- Google Cloud, etc.

A brief introduction to the origins of DevOps sets the scene and

explains how and why DevOps has evolved. Interconnection of

DevOps, Software Defined Networks (SDN) and IoT has been

analysed.

In order to better understand and assimilate the educational

material that is presented in this section, we invite you to answer the

following questions.

1. Describe basic concepts of DevOps. Which main features of

this methodology are?

2. Describe principles of DevOps methodology. Which are main

elements of this methodology?

3. Describe Agile evolution to DevOps. What does CI/CD mean?

4. Which are features of Blue–Green Deployment (BGD) as a

practice of DevOps?

5. Describe a five-step approach to creating a DevOps pipeline.

Which are features of the steps:

- CI/CD framework?

- Source control management?

- Build automation tool?

- Web application server?

- Code testing coverage?

6. Which are features of optional steps such as containers,

middleware automation tools?

7. Which are DevSecOps features and purposes?

8. Which are DevSecOps approaches: “Automate {in origin

“kill”} them all”? Checking the vulnerability of the generated code and

others?

9. How are SDN and DevOps connected?

10. Describe leading practices for SDN and DevOps for:

23. SDN in Context of Devops Technology

280

- service fulfillment,

- operations support and readiness,

- service assurance.

11. Which are reasons DevOps matter in IoT?

12. How do DevOps application influence on characteristics of

developed IoT systems

References

1. Introduction to DevOps on AWS,

https://d0.awsstatic.com/whitepapers/AWS_DevOps.pdf

2. A beginner's guide to building DevOps pipelines with open source

tools, https://opensource.com/article/19/4/devops-pipeline

3. DevOps - Technology and Tools overview,

https://www.gecko.rs/sites/default/files/pdf/Gecko_Solutions_DevOps_

Technology_Overview.pdf

4. Devops in the internet of things. Six reasons it matters and how to

get there, https://events.windriver.com/wrcd01/wrcm/2016/08/WP-

devops-in-the-internet-of-things.pdf

5. Practicing Continuous Integration and Continuous Delivery on AWS,

https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-

integration-continuous-delivery-on-AWS.pdf

6. DevOps for IoT Applications using Cellular Networks and Cloud

Athanasios Karapantelakis, Hongxin Liang, Keven Wang, Konstantinos

Vandikas, Rafia Inam, Elena Fersman, Ignacio Mulas-Viela, Nicolas

Seyvet, Vasileios Giannokostas,

https://www.ericsson.com/assets/local/publications/conference-

papers/devops.pdf

7. Vlasov, Y., Illiashenko, O., Uzun, D., Haimanov, O.

Prototyping tools for IoT systems based on virtualization techniques

(Conference Paper). Proceedings of 2018 IEEE 9th International

Conference on Dependable Systems, Services and Technologies,

DESSERT 2018, 9 July 2018, P. 87-92

8. M. H. Syed, E. B. Fernández. Cloud Ecosystems Support for

Internet of Things and DevOps Using Patterns, Conference: 2016 IEEE

First International Conference on Internet-of-Things Design and

Implementation (IoTDI), DOI: 10.1109/IoTDI.2015.31

https://d0.awsstatic.com/whitepapers/AWS_DevOps.pdf
https://opensource.com/article/19/4/devops-pipeline
https://www.gecko.rs/sites/default/files/pdf/Gecko_Solutions_DevOps_Technology_Overview.pdf
https://www.gecko.rs/sites/default/files/pdf/Gecko_Solutions_DevOps_Technology_Overview.pdf
https://events.windriver.com/wrcd01/wrcm/2016/08/WP-devops-in-the-internet-of-things.pdf
https://events.windriver.com/wrcd01/wrcm/2016/08/WP-devops-in-the-internet-of-things.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://www.ericsson.com/assets/local/publications/conference-papers/devops.pdf
https://www.ericsson.com/assets/local/publications/conference-papers/devops.pdf

23. SDN in Context of Devops Technology

281

9. AWS IoT Plant Watering Sample,

https://docs.aws.amazon.com/iot/latest/developerguide/iot-plant-

watering.html

10. The DevOps Handbook: An Introduction Summary,

https://caylent.com/devops-handbook-introduction-summary/

11. The Definitive Guide to Scrum: The Rules of the Game,

https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-

Guide-US.pdf#zoom=100

12. Cloud Tutorial: AWS IoT,

https://www.cse.wustl.edu/~lu/cse521s/Slides/aws-iot.pdf

13. Allan К. (2018), “Automated Security Testing Best Practices”

https://phoenixnap.com/blog/devsecopsbest-practices-automated-security-

testing

14. Litz S. (2015) “What is DevSecOps”

http://www.devsecops.org/blog/2015/2/15/what-is-devsecops

15. Savant S(2018) “What is the difference between DevOps and

DevSecOps”, https://www.quora.com/What-is-the-difference-between-

DevOps-andDevSecOps

16. GitLab, (2018) “Static Application Security Testing (SAST)”,

https://docs.gitlab.com/ee/user/project/merge_requests/sast.html

17. S. Harris, “Physical and Environmental Security. In CISSP Exam

Guide”, USA McGraw-Hill, 6th ed., pp.427-502 2013.

18. Network Transformation with NFV and SDN,

https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000628-en.pdf

19. Operationalizing SDN and NFV Networks,

https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology

-media-telecommunications/us-tmt-operations-sdn-and-nfv-networks.pdf

20. Tempus SEREIN project official website http://serein.eu.org/

21. Erasmus+ ALIOT project official website http://aliot.eu.org/

22. Internet Of Things Course - Immersive Programme Master in

City and Technology [https://apps.uc.pt/search?q=Internet+of+Things]

23. MSc Programme in Information and Network Engineering

[https://www.kth.se/en/studies/master/information-and-network-

engineering/master-s-programme-in-information-and-network-

engineering-1.673817]

24. MSc Programme in Communication Systems

[https://www.kth.se/en/studies/master/communication-systems/

description - 1.25691]

https://docs.aws.amazon.com/iot/latest/developerguide/iot-plant-watering.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-plant-watering.html
https://caylent.com/devops-handbook-introduction-summary/
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf#zoom=100
https://www.cse.wustl.edu/~lu/cse521s/Slides/aws-iot.pdf
https://phoenixnap.com/blog/devsecopsbest-practices-automated-security-testing
https://phoenixnap.com/blog/devsecopsbest-practices-automated-security-testing
http://www.devsecops.org/blog/2015/2/15/what-is-devsecops
https://www.quora.com/What-is-the-difference-between-DevOps-andDevSecOps
https://www.quora.com/What-is-the-difference-between-DevOps-andDevSecOps
https://docs.gitlab.com/ee/user/project/merge_requests/sast.html
https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000628-en.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-tmt-operations-sdn-and-nfv-networks.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/technology-media-telecommunications/us-tmt-operations-sdn-and-nfv-networks.pdf
http://serein.eu.org/
http://aliot.eu.org/
https://www.google.com/aclk?sa=l&ai=DChcSEwilmM2Gi6rjAhWNyrIKHbSYCNMYABAAGgJscg&sig=AOD64_27dh93cxSXkir78gqu1WZHI9Di6Q&adurl=&q=&nb=0&res_url=https%3A%2F%2Fapps.uc.pt%2Fsearch%3Fq%3DInternet%2Bof%2BThings&rurl=https%3A%2F%2Fwww.uc.pt%2Fen&nm=101&bg=!f3ylfGREDaBlpklBXogCAAAAJlIAAAAJmQE8oAB9aGtm8bAMUAKQAS_stWTgpRmippO7CchBIE_NC_WIAV8Mp9bNaW0CvBhhxLis_fVh_pqTRLaPXkD-1j9lDQ8dY1JjhdF1lmNzgppvcSTOH6xqq0GoZxGTF5ttyAu0hrg-T2KnwU4LjGIhVGoJh-pjhqV_U9eUIE_R8acyA_2tUR3yEpaBwiquioFJpry2OcGX8lDgcNVOCQzKMAO1v1DzaWsBuF5aRYxxd68DhkxuYI8Vj6yQuHvOxbooXGrdrCPjnrqCAsNysqnq2g-u5sStdbQ1hFKRQmlkvw-NmFWobDBrV_3-NSv-YKUOVLlL_x73PUMRVYau8THhhtG3bXyWoeWUZ_dJrPIFQSgOKUy8iCVeeJK9fn0WjD89prwJIMq1lVVyMBrnfVLIyl_xc0uh2El3uKEoMhqJhQ
https://www.google.com/aclk?sa=l&ai=DChcSEwilmM2Gi6rjAhWNyrIKHbSYCNMYABAAGgJscg&sig=AOD64_27dh93cxSXkir78gqu1WZHI9Di6Q&adurl=&q=&nb=0&res_url=https%3A%2F%2Fapps.uc.pt%2Fsearch%3Fq%3DInternet%2Bof%2BThings&rurl=https%3A%2F%2Fwww.uc.pt%2Fen&nm=101&bg=!f3ylfGREDaBlpklBXogCAAAAJlIAAAAJmQE8oAB9aGtm8bAMUAKQAS_stWTgpRmippO7CchBIE_NC_WIAV8Mp9bNaW0CvBhhxLis_fVh_pqTRLaPXkD-1j9lDQ8dY1JjhdF1lmNzgppvcSTOH6xqq0GoZxGTF5ttyAu0hrg-T2KnwU4LjGIhVGoJh-pjhqV_U9eUIE_R8acyA_2tUR3yEpaBwiquioFJpry2OcGX8lDgcNVOCQzKMAO1v1DzaWsBuF5aRYxxd68DhkxuYI8Vj6yQuHvOxbooXGrdrCPjnrqCAsNysqnq2g-u5sStdbQ1hFKRQmlkvw-NmFWobDBrV_3-NSv-YKUOVLlL_x73PUMRVYau8THhhtG3bXyWoeWUZ_dJrPIFQSgOKUy8iCVeeJK9fn0WjD89prwJIMq1lVVyMBrnfVLIyl_xc0uh2El3uKEoMhqJhQ
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817
https://www.kth.se/en/studies/master/information-and-network-engineering/master-s-programme-in-information-and-network-engineering-1.673817

23. SDN in Context of Devops Technology

282

25. MSc Programmes to Embedded Systems and Internet of Things

[https://www.ncl.ac.uk/postgraduate/courses /degrees/embedded-

systems-internet-of-things-msc/relateddegrees.html]

https://www.ncl.ac.uk/postgraduate/courses%20/degrees/embedded-systems-internet-of-things-msc/relateddegrees.html
https://www.ncl.ac.uk/postgraduate/courses%20/degrees/embedded-systems-internet-of-things-msc/relateddegrees.html

24. Dependability and security models of IoT

283

PART VII. DEPENDABLITY AND SECURITY OF IOT

24. DEPENDABILITY AND SECURITY MODELS OF IOT

DrS. Prof. V. V. Sklyar, DrS. Prof. V. S. Kharchenko (KhAI)

Сontents

Abbreviations .. 284

24.1. Dependability and security concepts for IoT 285

24.1.1. Taxonomy of safety and security requirements 285

24.1.2. Dependability, safety and security attributes taxonomy 287

24.1.3 Risk analysis fundamentals .. 289

24.2 Dependability and safety models for IoT 290

24.2.1 Reference architectures of IoT.. 290

24.2.2 Redundancy and self-diagnostics implementation in IoT systems

 ... 292

24.2.3 Dependability and safety indicators.. 296

24.2.4 Failure Mode, Effect and Criticality Analysis (FMECA) of IoT

systems .. 300

24.3 Security models for IoT ... 302

24.3.1 IoT systems treats ... 302

24.3.2 Security measures ... 307

24.3.3 Threat and attacks modeling for IoT systems 310

24.4 Work related analysis .. 312

Conclusions and questions... 314

References ... 315

24. Dependability and security models of IoT

284

Abbreviations

C&C – Command and Control

EUC – Equipment Under Control

FMECA – Failure Mode, Effect and Criticality Analysis

ICS – Industrial Control System

IEC – International Electrotechnical Commission

IEEE – Institute of Electrical and Electronics Engineers

IIoT – Industrial IoT

ISA – International Society of Automation

ISMS – Information Security Management System

RAMS – Reliability, Availability, Maintainability, Safety

RBD – Reliability Block Diagrams

SIL – Safety Integrity Level

24. Dependability and security models of IoT

285

24.1. Dependability and security concepts for IoT

24.1.1. Taxonomy of safety and security requirements

Taxonomy of safety and security requirements is based on analysis

of relevant standard in this area, such as IEC 61508 “Functional safety

of electrical/electronic/programmable electronic safety-related systems”

and ISA/IEC 62443 “Security for Industrial Automation and Control

Systems”. These functional safety requirements can be divided in some

following categories [1]:

– Requirements to functional safety management;

– Requirements to functional safety life cycle;

– Requirements to systematic (system and software design)

failures avoidance;

– Requirements to random (hardware) failures avoidance.

A scope of the above requirements is highly dependent from as

named Safety Integrity Level (SIL) [2] which establishes relation

between IoT system risk level and a scope of the related safety

assurance countermeasures. The discussed approach can be represented

in a view of a diagram (see Fig. 24.1).

The above approach can be applied for IoT security concept.

Firstly, Security Levels shall be implemented for IoT system taken into

account risks levels (see Section 24.1.3). Secondly, Information

Security Management System (ISMS) shall be implemented and

coordinated with functional safety management issues. Thirdly, a

common security and safety life cycle shall be established to cover all

the process of IoT system development, verification and validation.

Fourthly, common safety and security risks shall be avoided to

implement coordinated countermeasures against random (hardware)

and systematic (system and software design) failures. Examples of

common safety and security random failures avoidance countermeasure

include redundancy, self-diagnostic, electromagnetic disturbances

protection and others (see Fig. 24.2) [3].

24. Dependability and security models of IoT

286

Fig. 24.1 – A concept of IoT safety requirements

Fig. 24.2 – A concept of IoT harmonized security and safety

requirements

24. Dependability and security models of IoT

287

Examples of common safety and security systematic failures

avoidance (attacks avoidance for security) are access control and

configuration control. Fifty, assessment shall be periodically performed

for both, security and safety. The discussed approach is the base for

security and safety coordination, as it is represented on Fig. 24.2.

24.1.2. Dependability, safety and security attributes taxonomy

Four of the attributes RAMS (Reliability, Availability,

Maintainability, Safety) used to be considered as extensions for

“classical” Reliability. The paper “Basic Concepts and Taxonomy of

Dependable and Secure Computing” [4] launched in 2004 the new

IEEE Transactions on Dependable and Secure Computing. It explains

the complexity of dependability in relation with security of modern

computer-based systems (see Fig. 24.3).

Fig. 24.3 – Dependability and security attributes

In the [2], dependability is considered as an integrating concept

including the following attributes:

– Availability is a readiness for correct service;

– Reliability is a continuity of correct service;

– Safety is an absence of catastrophic consequences for the user

and the environment;

– Integrity is an absence of improper system alterations;

– Maintainability is an ability to undergo modifications and

repairs.

24. Dependability and security models of IoT

288

Security is a composite of the attributes availability, integrity, and

confidentiality. When addressing security, availability is considered for

authorized actions as well as integrity is considered for a proper

authorization. Confidentiality is a supplementary, in comparison with

dependability, security attribute, which means the absence of

unauthorized disclosure of information.

Standardized definition of dependability is the following:

“dependability is the property to keep within the established values of

the parameters under all the stated conditions within a stated period of

time.” The above definition supposes a taxonomy which contains the

following four attributes of dependability:

– Reliability is continuity of the operation state during some time;

– Durability is continuity of operation with periodic maintenance

and repairs until retirement time; it is highly related with long term

operation;

– Maintainability is an ability to support operation state and to turn

back to operation state after periodic maintenance and repairs;

– Storability is an ability to support all dependability attributes

during storage.

To harmonize two dependability taxonomies (RAMS with the

standardized taxonomy) and security attributes let’s consider the

following statements [1]:

– Availability is a combination of Reliability and Maintainability

what is from equation A = MTTF / (MTTF + MTTR), where MTTF –

Mean Time to Failure, MTTR – Mean Time to Restoration;

– Accessibility is more appropriate term for safety domain the

Availability. However Accessibility is a part of Availability, so such

relation is established;

– Safety takes a care mostly about the failures of Safety Functions

(dangerous failure), which are intended to achieve or maintain a safe

state of a system. So there is a relation between Reliability and Safety,

and this relation is established via Safety Functions;

– At the same, Safety includes both Safety Functions and Integrity,

what is stated in the standards IEC 61508 as the confidence level

(sometimes, probability) of a system satisfactorily performing the

specified safety functions under all the stated conditions within a stated

period of time.

24. Dependability and security models of IoT

289

The considered approach to analysis of dependability, safety and

security attributes allows representing all attributes in a view of one

diagram (see Fig. 24.4).

Dependability

Reliability Maintainability

Availability

Accessibility

Security

Confidentiality

Integrity

Safety Functions

Safety

Durability Storability

Dependability
standards

IEC 61508 Security
CIA Triad

Fig. 24.4 – Integrated taxonomy of dependability, safety and

security attributes

24.1.3 Risk analysis fundamentals

Risk is a basic concept and indicator of safety or security, which is

a combination of the probability of an undesirable event and its

consequences [2]:

R(t) = P(t) · C, where P(t) is the probability of an undesirable

event, C is the potential damage.

24. Dependability and security models of IoT

290

Risk assessment can be quantitative and qualitative, where a

qualitative one operating with such categories as “high”, “medium”,

“low”, etc.

If an undesirable event and damage from it are stated, then the risk

is numerically equal to the probability P(t) of the occurrence of fixed

damage. For example, the risk of a nuclear power plant accident with

the release of radioactive products into the atmosphere today is not

more than 10-7 1/year.

In information security a quantitative assessment can be made as a

boundary value for single loss expectancy (SLE): SLE = AV · EF,

where AV is asset value, EF is exposure factor which expresses a

percentage of damage to asset value because any of threat. To get

annual loss of expectancy (ALE) it is needed to take into account

annual risk concurrency (ARO): ALE = SLE · ARO. Investment to

security protective measures during one year cannot be more than ALE

value.

The ALARA / ALARP principle (as low as reasonably applicable /

practicable) is widely used for risk assessment and management. This

approach implies risk reduction as much as possible to achieve due to

actually available limited resources.

24.2 Dependability and safety models for IoT

24.2.1 Reference architectures of IoT

Requirements for IoT components have been identified by

different vendors, system integrators, consortia etc. IoT Reference

Architecture is a subject of standardization, what is developing now by

International Electrotechnical Commission (IEC) and Institute of

Electrical and Electronics Engineers (IEEE). The IoT Reference

Architecture should describe the system or systems for the IoT, the

major components involved the relationships between them, and their

externally visible properties (see Fig. 24.5).

To specify a possible structure of IoT system let’s consider a

medical application (Fig. 24.6) which includes Blood Pressure Devices

(device layer), Local Network Router & Medical Service Gateway

(network layer), Cloud Data Center (service layer), and User

Application (application layer).

24. Dependability and security models of IoT

291

Fig. 24.5 – IoT Reference Architecture

Blood

Pressure

Devices

User Terminal

(User Application)

Local

Network

Router
Medical

Service

Gateway

Cloud Data

Center

Fig. 24.6 – An example of medical IoT system

Device layer is represented by sensor networks which are

connected with mini-computers or controllers. Device Layer has a

typical structure of the Industrial Control System (ICS), what is

24. Dependability and security models of IoT

292

reflected in architecture of Industrial IoT (IIoT) or Internet ICS (IICS)

as well as in Industry 4.0 concept (see Fig. 24.7). Such architecture is a

result of hybridization of ICS with IoT.

Fig. 24.7 – An example of architecture of Industrial IoT system

24.2.2 Redundancy and self-diagnostics implementation in IoT

systems

To provide redundancy of IoT systems let’s investigate a system

represented on Fig. 24.6. For this system we added a redundant channel

as well as redundant cross-channel communication which allow

recovering system in a case of single failures. Cloud Data Centers need

to have communication link to synchronize stored data in accordance

with implemented time intervals (see Fig. 24.8). Redundancy can be

implemented for some components as well for a system. Since

redundancy for some components does not provide a big value for a

24. Dependability and security models of IoT

293

system (for example redundant Blood Pressure Devices for a single

patient), a criteria “Reliability / Cost” has to be used for system

efficiency analysis.

Blood

Pressure

Devices 2

User Terminal 2

(User Application)

Local

Network

Router 2
Medical

Service

Gateway 2

Cloud Data

Center 2

Blood

Pressure

Devices 1

User Terminal 1

(User Application)

Local

Network

Router 1

Medical

Service

Gateway 1

Cloud Data

Center 1

Fig. 24.8 – Redundant medical IoT system

Redundant IIoT systems have to implements redundancy for both

ICS (RTU) and IoT parts. For this approach let’s investigate a system

represented on Fig. 24.7. Fig. 24.9 represents a single connected to IIoT

site, and such sites can be multiple. Also redundancy can be

implemented for components as well as for a system. Fig. 24.9

represents inter-channel communication links, but channel can be

separated to implement independency.

The typical ICS includes [1,2]:

– power supply components;

– field equipment (sensors and actuators);

24. Dependability and security models of IoT

294

– programmable logic controllers, including input and output

modules and control modules;

– network equipment, servers, and human-machine interface

components.

Control
Room 1

S1
Input

Module 1 A1

Logic
Module 1

Output
Module 1

Power
Supply 1

AC

S2
Input

Module 2 A2

Output
Module 2

Power
Supply 2

DC Logic
Module 2

HMI 1 Server 1

Control
Room 2

HMI 2 Server 2

Network 2

Network 1
Local Network

Router 1

Cloud Data
Center 1

User Terminal 1
(User Application)

Cloud Data
Center 2 User Terminal 2

(User Application)

Local Network
Router 2

Fig. 24.9 – Redundant Industrial IoT system

Ideally, maximum independence is ensured by power supplying of

independent channels of the system from independent inputs. The

diagram shows that the first channel is powered by an alternating

current, and the second channel is powered by direct current. Then, in

case of problems with power supply in one of the power supply

systems, only one of the channels will be de-energized. Ensuring

continuity and quality of power supply even in extreme conditions is a

vital aspect of ensuring the safety and security of control systems.

24. Dependability and security models of IoT

295

Redundant sensors, controllers and actuators may be used.

Protocols of information exchange can be organized between channels,

or maximum independence between channels can be realized, and then

there will be no exchange.

In addition, a redundant network architecture and a duplicate man-

machine interface with redundant computing components and data

storages can be implemented.

Redundant architectures with “2-out-of-3” and “2-out-of-4” voting

logic are also used In ICS important for safety and security.

Self-diagnostics of digital devices can be described as on

Fig. 24.10. Along with the main algorithms of digital control, in

parallel, the system implements the processing of diagnostic data and

watchdog functions. All these three processes are performed

independently of each other, and independent clock sources, different

chips, etc. can be used [1,3].

Fig. 24.10 – Self-diagnostics of IoT

Watchdog monitors the simplest response (heart bit) from the

chips that perform data processing, and when a problem is detected (the

response is stopped), it turns off the power and puts the system into a

safe state. In addition, the watchdog timer can monitor the power level

and produce a similar shutdown command if there is a dangerous power

deviation from the specified level. Safe state for safety systems, as a

rule, consists in removing power from the output analogue and discrete

https://1.bp.blogspot.com/-HLrLKsnNS9I/WQmF8KdbdZI/AAAAAAAABV0/XWwnWU3zN-ckK7TWKqYM07ey-x3JBffBACEw/s1600/Fig7.7_Functional_Safety_Sklyar.png

24. Dependability and security models of IoT

296

outputs. If necessary, the safety system can supply power to the

actuators, but then the output requires additional signal converters.

If self-diagnostics detects a critical failure (for example, hardware

failure, hardware or software configuration violation, data transmission

violation, etc.), a command is issued to put the system into a safe state,

which is performed as if the command came from main control logic.

Now we generalize typical functions of digital devices self-

diagnostics. The functions of the watch dogs and power control have

been already considered. An important diagnostic function is to control

the configuration of software and hardware. This property also affects

information security. During operation, each hardware module

periodically transmits information about its serial number and

configuration of the loaded software (for example, check-sum). If a

configuration failure occurs, then the system performs the specified

protective actions, up to a transition to a safe state and power off.

Another option to perform hang-up monitoring is internal or

external timers that check the execution time of control logic loops.

Some procedures can be restarted several times, and in case of several

unsuccessful restarts, a decision to transit to a safe state can be made.

An important function of control systems is to ensure the accuracy

of measurement of input and output analogue signals. To diagnose

measurement accuracy, redundant analogue-digital converters (ADCs)

and digital-analogue converters (DACs) can be used, in which the

processing results are compared and a diagnostic message is generated

on the coincidence or discrepancy of the results.

Much attention in the control systems is paid to the transfer of data

packages, both through communication channels and in the processing

distributed between the software and hardware components. Here,

methods such as transmission confirmation, timeout control, integrity

monitoring and data packages transmission sequence, cyclic

redundancy codes (CRC) are used for self-diagnostics. To protect

information during data transmission encryption algorithms can be

used.

24.2.3 Dependability and safety indicators

The basic concept of functional safety assessment is dividing a

common failure rate (let us begin with the exponential distribution

with a constant failure rate) into dangerous and safe failures as well as

24. Dependability and security models of IoT

297

into detected and undetected failures. This is a main difference of

functional safety from reliability. From this point of view we have four

failures sets (see Fig. 24.11):

– Safe Detected failures with a failure rate Sd – failures which

put the equipment under control (EUC) to a safe state and are

discovered by self-diagnostics;

– Safe Undetected failures with a failure rate Su – failures which

put the EUC to the a state and are not discovered by self-diagnostics;

– Dangerous Detected failures with a failure rate Dd – failures

which put the EUC to a potentially dangerous state and are discovered

by self-diagnostics;

– Dangerous Undetected failures with a failure rate Du – failures

which put the EUC to a potentially dangerous state and are not

discovered by self-diagnostics.

Dangerous
Detected

(Dd)

Dangerous
Undetected

(Du)

Safe
Undetected

(Su)

Safe
Detected

(Sd)

Fig. 24.11 – Failures theoretical-set model

So, there are some obvious dependencies following from

Fig. 24.11:

– Common failure rate is = Sd + Su + Dd + Du;

– Dangerous failure rate is D = Dd + Du;

– Safe failure rate is S = Sd + Su;

– Detected failure rate is d = Sd + Dd;

– Undetected failure rate is u = Su + Du.

24. Dependability and security models of IoT

298

Also a lot of relative metrics can be extracted from dependencies

between sets cardinality and different failure rates values. The most

important from these metrics are the following:

– Safe Failure Fraction (SFF) in accordance with IEC 61508 is

SFF = (S + Dd) / ;

– Dangerous Failure Fraction (DFF) in accordance with IEC 61508

is DFF = 1 – SFF = Du / ;

– Diagnostic Coverage (DC) for dangerous failures in accordance

with IEC 61508 is DCD = Dd / D;

– More widely used equation for Diagnostic Coverage is

DC = D / ;

– Proof Test Coverage (PTC) should be calculated from the total

failure rates for the using the formula PTC = 1 – λDuaPT / λDu, where

λDuaPT is λDu after Proof Test.

In addition, IEC 61508 requires the following indicators to be

determined for the system components:

– Lifetime – the time during which the element performs its

functions without breaking the properties;

– Periodic proof test interval – the time between conducting

periodic tests, which cover such components that cannot be diagnosed

during operation; thus, dangerous undetected failures are identified;

– Diagnostic test interval – the time between conducting tests in

the process of operation;

– Mean Repair Time (MRT), which may be equivalent to Mean

Time to Restoration after failure (MTTR).

To move ahead with safety indicators we need to introduce some

definitions from the standards series IEC 61508.

– Safety Function is a function to be implemented by a safety-

related system or other risk reduction measures, that is intended to

achieve or maintain a safe state for the EUC, in respect of a specific

hazardous event; all the above indicators are usually calculated for

specified Safety Functions; sometimes for ICS a term Safety

Instrumented Function (SIF) is used as equal;

– Safety Integrity is a probability of a safety-related system

satisfactorily performing the specified safety functions under all the

stated conditions within a stated period of time;

24. Dependability and security models of IoT

299

– Safety Integrity Level (SIL) is a discrete level (one out of a

possible four), corresponding to a range of safety integrity values,

where SIL 4 has the highest level of safety integrity and SIL 1 has the

lowest;

– Mode of Operation is a way in which a safety function operates,

which may be either

• Low Demand Mode: where the safety function is only performed

on demand, in order to transfer the EUC into a specified safe state, and

where the frequency of demands is no greater than one per year; or

• High Demand Mode: where the safety function is only performed

on demand, in order to transfer the EUC into a specified safe state, and

where the frequency of demands is greater than one per year; or

• Continuous Mode: where the safety function retains the EUC in a

safe state as part of normal operation.

IEC 61508 states different Safety Indicators depending from the

Mode of Operation.

For Low Demand Mode average probability of dangerous failure

on demand (PFDavg) shall be calculated. PFDavg is mean

unavailability of a safety-related system to perform the specified safety

function when a demand occurs from the EUC.

The IEC 61508 states that only Dangerous Undetectable failures

contribute to PFDavg, the last can be calculated as PFDavg(Du) =

= 1 – A(Du) = U(Du) = Du / (Du + μDu), where μDu is restoration

rate of Dangerous Undetectable failures.

Also for Dangerous failures PFDavg(D) = 1 – A(D) = U(D) =

= D / (D + μD), where μDu is restoration rate for all the Dangerous

failures.

For High Demand Mode and Continuous Mode average frequency

of a dangerous failure per hour (PFH) shall be calculated. PFH is the

average frequency of a dangerous failure of a safety related system to

perform the specified safety function over a given period of time.

Usually PFH is defined as failure rate, so on the base of Dangerous

Undetectable failures PFH(Du) = Du, and on the base of all the

Dangerous failures PFH(D) = D.

Also the IEC 61508 states that PFH can be calculate as

unavailability or as unreliability depending from a safety-related system

application conditions.

24. Dependability and security models of IoT

300

24.2.4 Failure Mode, Effect and Criticality Analysis (FMECA) of

IoT systems

FMECA differs from other methods of dependability and safety

analysis in that it puts together all the tasks of calculating safety

indicators. The standard IEC 60812:2006 “Analysis techniques for

system reliability – Procedure for failure mode and effects analysis

(FMEA)” has been developed is to describe this method.

At the initial stages of the FMECA application, it is recommended

to apply a hierarchical decomposition of the system, for example, using

Reliability Block Diagrams (RBD).

The safety and security analysis sequence using FMECA includes

the following steps:

– analysis of the structure and functions of the system;

– division of the system into its parts and elements, based on the

influence of element failures on system failures and the level of detail;

– drawing and analysis of RBDs for system decomposition;

– determination of types of failures and operating modes of the

system;

– determination of the effects of failures and their criticality;

– determination of root causes of failures;

– determination of failures rate;

– determination of methods for detection and compensation of

failures; for this self-diagnostic approach is analysed, both for hardware

and software, as well as the diagnostic coverage;

– calculation and analysis of dependability and security indicators;

bottom-up analysis has to be performed, i.e. elements are assembled in

units, parts and the system as a whole; the obtained indicators are

compared with the specified requirements.

For the above steps, different levels of details may be applied.

Usually for safety systems, the analysis takes into account all electronic

components, such as resistors, capacitors, diodes, etc.

FMECA is performed for the identified safety and security

functions from the point of view of the software and hardware involved

in the execution of the function. For these functions, the states of

dangerous failures have to be defined and described. The results of the

analysis are recorded in the form of FMECA tables (see Table 24.1).

24. Dependability and security models of IoT

301

Table 24.1 – A part of FMECA table for a hardware module

Unit Failure

Mode

Failure

Cause

Failure Effect Failure

Critica-

lity

Failure

Diag-

nostics

Failure

Recovery

Failure

Rate

Power

Supply

Unit

Loss of

power

Short

break

Loss of power

of the module

Dange-

rous

Online

check of

voltage

value

Safe state

transition

7·10-8

1/hour

Clock

Frequency

Unit

Loss of

clocks

pulses

Short

break

Power off of

Micro-

controller Unit

Dange-

rous

Watch

Dog

Safe state

transition

2·10-8

1/hour

Micro-

controller

Unit

No

contact

Fault of

solde-

ring

Power off of

Micro-

controller Unit

Dange-

rous

Watch

Dog

Safe state

transition

1,5·10-8

1/hour

Micro-

controller

Unit

RAM

error

Fault of

a chip

Not trusted

Micro-

controller Unit

Dange-

rous

RAM

test

Safe state

transition

2,5·10-8

1/hour

24. Dependability and security models of IoT

302

24.3 Security models for IoT

24.3.1 IoT systems treats

An actual landscape of IoT threats is represented in the [5]. IoT

threats are grouped in 8 categories and are briefly discussed in

Table 24.2.

Table 24.2 – IoT systems treats

Threat Threat description

Nefarious activity / Abuse

Denial of

Service

This attack can be bi-directional. It can target an

IoT system resulting in system unavailability and

production disruption caused by a massive number of

requests sent to the system. On the other hand, an

attacker may take advantage of a large number of IoT

devices and create an army of IoT botnets as a platform

to attack some other system.

Malware The penetration of malicious software in an IoT

aimed at performing unwanted and unauthorised

actions, which may cause damage to an OT system,

operational processes and related data. Ransomware,

viruses, Trojan horses and spyware are common

examples of this threat.

Manipu-

lation of

hardware

&

software

Threat of unauthorized manipulation of devices

software or applications within an OT system by an

attacker. In terms of IoT systems, an attacker’s actions

may include manipulation of an industrial robot,

manipulation of remote controller devices suppressing

state of a control device and modification of its

configuration.

Manipu-

lation of

informa-

The threat of unwanted and unauthorized data

modification by an attacker. This may apply to

compromising OT or production supporting systems,

24. Dependability and security models of IoT

303

Threat Threat description

tion and manipulation of process data. Possible

consequences may include inappropriate decisions

based on falsified data.

Targeted

attacks

The threat of a cyberattack targeting a specific

organisation (or a specific person in this organisation).

Such attack aims at harming an organisation possibly to

take control over the system using various technical

means such as compromising key devices and falsifying

telemetry deceiving unaware operators. Other impacts

include damage of reputation or theft of company

secrets. This attack is different from wider scale attacks

whose objective is to infect any company that connects

to a certain website prepared by an attacker or any

company that uses a device or software with a certain

vulnerability.

Abuse of

personal

data

The threat of compromising personal / sensitive

information stored on devices or in the cloud. The

attacker’s goal is to gain unauthorised access to this

kind of data and use it in an illicit manner.

Brute

force

The threat of gaining unauthorised access to an

organisation’s resources (i.e. data, systems, devices,

etc.) through a large number of attempts to guess the

correct key or password. IoT systems that allow the

utilisation of uncomplicated or default passwords for

devices and systems may be especially vulnerable to

such attacks.

 Eavesdropping / Interception / Hijacking

Man-in-

the-

Middle

attack /

Session

The threat of active eavesdropping, where

messages exchanged between unaware affected parties

are relayed by an attacker. The attacker may just listen

to the exchanged messages or modify or delete

transmitted information, leading to communication

24. Dependability and security models of IoT

304

Threat Threat description

hijacking disruption.

IoT

commu-

nication

protocol

hijacking

The threat of an attacker taking control of an

existing communication session between two network

components, which may lead to the disclosure of

passwords and other confidential information.

Network

recon-

naissance

The threat of revealing internal network

information (e.g. connected devices, used protocols,

open ports and used services, etc.) to an attacker who

manages to scan a network passively. With this

knowledge, the attacker can plan which actions to take

next to compromise system operation.

Physical attack

Vanda-

lism and

theft

The threat of causing physical damage to the

device by a saboteur who gains physical access to the

operational environment – either an outsider who has

managed to bypass insufficient physical security

measures or an insider, e.g. a disgruntled employee

who, for some reasons, wants to harm the organization.

This threat also includes theft.

Sabotage The threat of tampering with a device by a

saboteur who gains physical access to the operational

environment – either an outsider who manages to

bypass insufficient physical security measures or an

insider, e.g. a disgruntled employee who, for some

reasons, wants to harm the organization. The attacker

may take advantage of improper configuration of ports

and possibility exploit open ports. The attacker may

also use access to execute unauthorized operator

actions.

24. Dependability and security models of IoT

305

Threat Threat description

 Unintentional damages (accidental)

Uninten-

tional

change

of data or

configu-

ration

The threat of disrupting an operational process by

unintentional data or configuration change in the IoT

system performed by an insufficiently trained

employee. Even with good intentions, an unskilled

employee, unaware of the consequences, may introduce

improper changes to the system, especially if he or she

receives higher than necessary privileges.

Errone-

ous use

or

adminis-

tration

The threat of disrupting an operational process or

causing physical damage to the device by unintentional

misuse of a device by an insufficiently trained

employee. Even with good intentions, an unskilled

employee

Damage

caused

by a third

party

The threat of damaging assets caused by a third

party. The third parties may have access to the OT

system, for example, for maintenance or software

update purposes. If this access is not controlled in a

sufficient way, security breaches of a third party

organisation may affect the company that receives the

service.

 Failures / Malfunctions

Failure

or mal-

function

of a

sensor /

actuator

The threat of failure or malfunction of IoT end

devices. This can occasionally happen, especially if

proper maintenance and compliance with the devices’

manuals and instructions during the exploitation is not

ensured.

Failure

or mal-

function

of a

The threat of failure or malfunction of control

system. This can occasionally happen, especially if

proper maintenance and compliance with the devices’

manuals and instructions during the exploitation is not

24. Dependability and security models of IoT

306

Threat Threat description

system ensured.

Software

vulnera-

bilities

exploita-

tion

The threat that an attacker takes advantage of

IIoT end device firmware or software

vulnerabilities. Such devices are often vulnerable

due to lack of updates, usage of weak or default

passwords and improper configuration..

Failure

of

service

providers

The threat of disruption of processes that rely on

third party services in case of failure or malfunction of

these services.

Outages

Commun

ication

network

outage

The threat of unavailability of communication

links related to problems with cable, wireless or mobile

network.

Power

supply

outage

The threat of failure or malfunction of the power

supply. If no emergency power supply exists for critical

systems, any power supply disruption may result in

serious consequences due to a sudden shutdown of

production processes.

Loss of

support

services

The threat of failure or malfunctions of systems

supporting

Legal

Violation

of rules

and

regula-

tions

The threat of legal issues and financial losses

related to personal data processing, e.g. related to the

usage of IIoT end devices without complying with local

laws or regulations. In operations within the European

Union, these requirements are imposed on companies

24. Dependability and security models of IoT

307

Threat Threat description

by the GDPR.

Failure

to meet a

contract

The threat of violating contractual requirements by

components manufacturers and software providers in

case of failure to ensure the required security measures.

 Disaster

Natural

disasters

The threat of natural disasters such as floods,

lightning strikes, heavy winds, rain and snowfall, which

may cause physical damage to the environment

components.

Environ-

mental

disasters

The threat of incidents and unfavorable conditions

such as fires, pollution, dust, corrosion, explosions,

which may cause physical damage to the environment

components.

24.3.2 Security measures

The document [5] describes three groups of IoT measures,

including policies, organizational practices, and technical practices.

This first group of security measures mostly refers to policies and

procedures that should be established within organizations to help

ensure a good level of cybersecurity, especially where IoT solutions are

concerned. In addition, privacy issues have been covered in the context

of manufacturers who should ensure that their solutions do not violate

privacy regulations, and operators, who should be sensitized to privacy

related risks and made aware of how to utilize IoT devices without

exposing users’ personal information. Policies include four the

following categories which contains 24 practices [5]:

– Security by design includes security measures which should be

applied from the very beginning of product development;

– Privacy by design includes security measures related to privacy

and protection of personal data. These measures should be applied from

the first stages of product development;

24. Dependability and security models of IoT

308

– Asset Management includes security measures regarding asset

discovery, administration, monitoring and maintenance;

– Risk and Threat Management includes security measures

regarding the recommended approach to the process of risk and threat

management adapted to IoT environment.

Organization principles and governance are indispensable factors

that are usually critical in terms of company security. The following

security measures explain how industrial companies should operate,

what organizational rules and responsibilities they should establish and

follow and what approach they should adopt towards their employees

and third party contractors to handle effectively cybersecurity incidents,

manage vulnerabilities and ensure security of IoT solutions throughout

their lifecycle. Organizational practices include six the following

categories which contains 27 practices [5]:

– Endpoints lifecycle includes security measures related to security

at different stages of product (including end devices and infrastructure)

lifecycle, including the procurement process, supply chain, handover

phase, exploitation and end-of-life;

– Security Architecture includes security measures regarding the

architectural-based approach and establishment of security architecture.

– Incident handling includes security measures regarding the

detection and response to incidents that may occur in IoT system

environments;

– Vulnerabilities management includes security measures on the

vulnerability management process, related activities and vulnerability

disclosure;

– Training and Awareness includes security measures regarding

the recommended approach related to security training and raising

awareness of employees working with IoT devices and systems;

– Third Party Management includes security measures related to

third party management and control of third party access.

Apart from implementing policies and organizational practices,

security also needs to be addressed through the appropriate technical

capabilities of IoT solutions and the environments where they are

deployed. The technical security measures listed below constitute a last

piece of the puzzle enabling IoT and Industry 4.0 companies to improve

their level of security. Technical practices include ten the following

categories which contains 59 practices [5]:

24. Dependability and security models of IoT

309

– Trust and Integrity Management includes security measures that

can help ensure the integrity and trustfulness of data and devices;

– Cloud security includes security measures regarding various

security aspects of cloud computing;

– Business continuity and recovery includes security measures

regarding the development, testing and reviewing of company’s plan to

ensure resilience and continuity of operations in the event of security

incidents;

– Machine-to-Machine security includes security measures

regarding key storage, encryption, input validation and protection in

Machine-to-Machine communications security;

– Data Protection includes security measures regarding protection

of confidential data on various levels of an organization and

management of access to data;

– Software/Firmware updates include security measures regarding

verification, testing and execution of patches.

– Access Control includes security measures regarding the control

of remote access, authentication, privileges, accounts and physical

access;

– Networks, protocols and encryption include security measures

those can help ensure security of communications through proper

protocols implementation, encryption and network segmentation;

– Monitoring and auditing includes security measures regarding

the network traffic and availability monitoring, logs collection and

reviews;

– Configuration Management includes security measures regarding

security configuration, management of changes in configuration,

devices hardening and backup verification.

24.3.3 Threat and attacks modeling for IoT systems

A kill chain is a systematic process to target and engage an

adversary to create desired effects. U.S. military targeting doctrine

defines the steps of this process as find, fix, track, target, engage, assess

(F2T2EA): find adversary targets suitable for engagement; fix their

location; track and observe; target with suitable weapon or asset to

create desired effects; engage adversary; assess effects.

24. Dependability and security models of IoT

310

This is an integrated, end-to-end process described as a “chain”

because any one decency will interrupt the entire process [6].

With respect to computer network attack or computer network

espionage, the definitions for these kill chain phases are as follows:

1. Reconnaissance – Research, identification and selection of

targets, often represented as crawling Internet websites such as

conference proceedings and mailing lists for email addresses, social

relationships, or information on specific technologies.

2. Weaponization – Coupling a remote access trojan with an

exploit into a deliverable payload, typically by means of an automated

tool (weaponizer). Increasingly, client application data files such as

Adobe Portable Document Format (PDF) or Microsoft Office

documents serve as the weaponized deliverable.

3. Delivery – Transmission of the weapon to the targeted

environment. The three most prevalent delivery vectors for weaponized

payloads by advanced persistent treats actors, as observed by the

Lockheed Martin Computer Incident Response Team (LM-CIRT) for

the years 2004-2010, are email attachments, websites, and USB

removable media.

4. Exploitation – After the weapon is delivered to victim host,

exploitation triggers intruders' code. Most often, exploitation targets an

application or operating system vulnerability, but it could also more

simply exploit the users themselves or leverage an operating system

feature that auto-executes code.

5. Installation – Installation of a remote access trojan or backdoor

on the victim system allows the adversary to maintain persistence

inside the environment.

6. Command and Control (C&C) – Typically, compromised hosts

must beacon outbound to an Internet controller server to establish a

C&C channel. Advanced malware especially requires manual

interaction rather than conduct activity automatically. Once the C&C

channel establishes, intruders have “hands on the keyboard” access

inside the target environment.

7. Actions on Objectives – Only now, after progressing through

the first six phases, can intruders take actions to achieve their original

objectives. Typically, this objective is data exfiltration which involves

collecting, encrypting and extracting information from the victim

environment; violations of data integrity or availability are potential

24. Dependability and security models of IoT

311

objectives as well. Alternatively, the intruders may only desire access

to the initial victim box for use as a hop point to compromise additional

systems and move laterally inside the network.

The threats and risks previously listed could be used by attackers

to cause cascade effects and further damages at different levels in the

infrastructures. The different attack scenarios and the level of

importance of each attack have been gathered from the desktop

research as well as the information provided by the experts who have

contributed to the report. It is worth noting that the attacks may take

place throughout the whole process, and the impact that attacks may

have on each specific part of the process has also been analysed.

There are the following types of the most critical attacks of IoT

systems [7]:

– Against the network link between controller(s) and actuators;

– Against sensors, modifying the values read by them or their

threshold values and settings;

– Against actuators, modifying or sabotaging their normal settings;

– Against the administration systems of IoT;

– Exploit Protocol vulnerabilities;

– Against devices by injecting commands into the system console;

– Stepping stone attacks;

– DDoS using an IoT botnet;

– Power source manipulation and exploitation of vulnerabilities in

data readings;

– Ransomware.

Let’s consider a botnet attack, as an example for modeling. This

attack entails the exploitation of some vulnerability inside a device to

inject commands and obtain administrator privileges, with the purpose

of creating a botnet made up of those vulnerable IoT devices. A botnet

is a network of automatic devices that interact to accomplish some

distributed task. Due to the characteristic interconnection of IoT

devices and their poor configuration, carrying out such an attack is

simple. This attack scenario is based on the Mirai botnet, which has

conducted several of the most forceful attacks in recent history, and has

proven capable of attacking varied kinds of targets. Therefore, with

potential targets such as a hazardous energy infrastructure, the impact

of a Mirai’s attack can reach extremely critical levels. A kill chain for a

botnet attack which includes the following actions:

24. Dependability and security models of IoT

312

– Scanning open ports in IoT devices that are accessible over the

Internet, which are usually poorly protected by default usernames and

passwords that, users never change;

– Gaining access to the device;

– Commands injection into the device’s console;

– Obtain administrator privileges;

– Connect the device to a C&C;

– Execution a malicious script;

– Deleting the script itself afterward and running in-memory;

– Spread attacking the same way other vulnerable devices, in order

to gather an IoT device army, conscripting them into a botnet;

– Control the botnet from a C&C centre, in order to launch

distributed attacks.

24.4 Work related analysis

Some lack of standardization efforts is identified in area of IoT

safety and security [8]. An issue is a new security focus in IoT

applications area. For example, the [8] identifies the following five

main IoT areas: connected vehicles, consumer IoT, health and medical

devices, smart buildings, and smart manufacturing.

Cybersecurity objectives for traditional information technology

systems generally prioritize confidentiality, then integrity, and lastly

availability. IoT systems cross multiple sectors as well as use cases

within those sectors. Accordingly, cybersecurity objectives may be

prioritized very differently by various parties, depending on the

application.

The increased ubiquity of IoT components and systems heighten

the risks they present. Standards-based cybersecurity risk management

will continue to be a major factor in the trustworthiness of IoT

applications. Analysis of the application areas makes it clear that

cybersecurity for IoT is unique and requires tailoring existing standards

and creating new standards to address challenges, for example:

- pop-up network connections,

- shared system components,

- the ability to change physical aspects of the environment, and

- related connections to safety.

24. Dependability and security models of IoT

313

However in the last 1-2 years this gap is partly fulfilled by

technical reports describing good practices in IoT area [5,7]. Also there

are researches targeted to development and adjustment of dependability

and security models for IoT systems as the followings.

A team of University of Coimbra focuses on the paradigm of the

fog orchestration as a basic of IoT Service Layer with open challenges,

technological directions [9]. Another research direction of the team is

features of resilience for cyber-physical systems [10].

A.-L. Kor and C. Pattinson from Leeds Beckett Univercity pay

attention to social aspects of IoT implementation in frame of user-

oriented design methodology named SMART-ITEM [11].

We can consider the typical studies in area of IoT safety and

security, which take into account the following research scenario [5]:

– To defines relevant terminology to promote common

understanding of relevant dependability and cybersecurity issues;

– To categorizes in a comprehensive taxonomy of the assets across

the information process and value chain;

– To introduce detailed hazards and threats taxonomy based on

related risks and attack scenarios;

– To maps the identified hazards and threats to assets, thus

facilitating the deployment of dependability and security measures

based on the customized requirements of interested stakeholders;

– To list dependability and security measures related to the use of

IoT system and map them against the aforementioned hazards and

threats.

Conclusions and questions

Dependability and security models are represented in the section

based on concept “safety risks – hazards; security risks – treats”, and

implementation it in the appropriated approaches to assess the most

important indicators.

Dependability and safety models are mostly quantitative based on

probabilistic analysis of indicators values. Security models are mostly

qualitative based on threats analysis and the associated attacks scenario.

A common basic of safety and security risks, hazards and threats

allows to consider integration of these IoT systems features. A set of

24. Dependability and security models of IoT

314

requirements to IoT systems contains issues of process management,

life cycle, random and systematic failures avoidance, as well as attacks

avoidance.

In order to better understand and assimilate the educational

material that is presented in this section, we invite you to answer the

following questions.

1. What types of risks arise in IoT systems, and what is the

nature of each of these risks?

2. How are dependability, safety and security interrelated?

3. What are the challenges in terms of safety and security those

are created by the rapid increase in the number of devices connected to

the Internet?

4. What are the groups of requirements for safety and security?

5. What attributes of functional safety does IEC 61508 define?

6. How do safety attributes constitute a common system with

attributes of security and dependability?

7. What attributes does the abbreviation RAMS include?

8. What is the difference between reliability, dependability,

availability and safety?

9. What is risk? Please let’s explaine features of concept of risk

for different systems.

10. How can risk be assessed qualitatively and quantitatively?

11. What is the principle of ALARA?

12. What are the main indicators of dependability and formulas

for their calculations?

13. What are the main indicators of safety and formulas for their

calculations?

14. Why is it necessary to analyze simultaneously indicators of

dependability, safety and security?

15. How is the method of Reliability Block Diagrams applied?

16. How is the method of Failure Mode, Effect and Criticality

Analysis (FMECA) applied?

17. What are the main threats of IoT systems?

18. Which security measures are recommended to be

implemented for IoT systems?

19. What are the most serious cyber-attacks of IoT systems?

20. How threats and attacks can be modeled for IoT systems?

24. Dependability and security models of IoT

315

21. What modifications of FMECA technique do you know that

can be applied for security analysis (for example technique IMECA and

others)?

References

1. Скляр В.В. Обеспечение безопасности АСУТП в

соответствии с современными стандартами. – Инфра–Инженерия,

2018.

2. Rausand M. Reliability of safety–critical systems : theory and

application. – John Wiley & Sons, Inc., Hoboken, New Jersey, USA,

2014.

3. Федоров Ю.Н. Справочник инженера по АСУ ТП:

Проектирование и разработка. – Инфра–Инженерия, 2008.

4. Avižienis, A., Laprie, J.-C., Randell, B. and Landwehr, C.

Basic Concepts and Taxonomy of Dependable and Secure Computing.

IEEE Transactions on Dependable and Secure Computing (2004), 1(1):

11-33.

5. Good Practices for Security of Internet of Things in the context

of Smart Manufacturing. – The European Union Agency for Network

and Information Security, 2018.

6. Baseline Security Recommendations for IoT in the context of

Critical Information Infrastructures. – The European Union Agency for

Network and Information Security, 2017.

7. Hutchins E., Cloppert M., Amin R. Intelligence-Driven

Computer Network Defense Informed by Analysis of Adversary

Campaigns and Intrusion Kill Chains. – Lockheed Martin Corporation,

2017.

8. NISTIR 8200, Interagency Report on the Status of International

Cybersecurity Standardization for the Internet of Things (IoT). –

National Institute of Standards and Technologies, 2018.

9. Velasquez, K., Abreu, D.P., Assis, M. et al. Fog orchestration

for the Internet of Everything: state-of-the-art and research challenge.

Journal of Internet Services and Applications (2018) 9: 14.

10. Curado M. et al. Internet of Things. In: Kott A., Linkov I. (eds)

Cyber Resilience of Systems and Networks. Risk, Systems and

Decisions. Springer, 2019.

24. Dependability and security models of IoT

316

Kor A.L., Pattinson C., Yanovsky M., Kharchenko V. IoT-

Enabled Smart Living. In: Dastbaz M., Arabnia H., Akhgar B. (eds)

Technology for Smart Futures. Springer, 2018.

25. Safety and security management of IoT

317

25. SAFETY AND SECURITY MANAGEMENT OF IOT

DrS. Prof. V. V. Sklyar (KhAI)

Contents

Abbreviations .. 318

25.1 Safety and security management requirements to IoT 319

25.1.1 Safety and security management plan 319

25.1.2 Human resource management... 321

25.1.3 Configuration management .. 322

25.1.4 Tools selection and evaluation ... 324

25.1.5 Documentation management .. 326

25.1.6 Safety and security assessment ... 327

25.2 Safety and security life cycle for IoT .. 329

25.2.1 Overall life cycle .. 329

25.2.2 Safety and security life cycle: design top-down brunch 330

25.2.3 Safety and security life cycle: integration down-top brunch .. 331

25.2.4 Requirements tracing .. 331

25.3 Review, analysis and testing techniques for IoT 334

25.3.1 Documents review .. 334

25.3.2 Static code analysis ... 335

25.3.3 Functional testing ... 335

25.3.4 Code structural testing .. 336

25.4 Work related analysis .. 337

Conclusions and questions... 338

References ... 339

25. Safety and security management of IoT

318

Abbreviations

FMECA – Failure Mode, Effect and Criticality Analysis

IEC – International Electrotechnical Commission ISA – International

Society of Automation

ISMS – Information Security Management System

ISO – International Standardization Organization

NIST – National Institute of Standards and Technologies

SAD – System Architecture Design

SCA – Static Code Analysis

SRS – Safety Requirements Specification

SSLC – Safety and Security Life Cycle

SSMP – Safety and Security Management Plan

TP&S – Test Plan and Specification

TR – Test Report

V&V – Verification and Validation

25. Safety and security management of IoT

319

25.1 Safety and security management requirements to IoT

25.1.1 Safety and security management plan

General structure of requirements to safety and security is

considered in Section 24.

The umbrella part of requirement is related with safety and

security management. Safety and security management plan (SSMP) is

the document, which states the main safety and security issues for

specific IoT system or systems development and operation project.

The SSMP covers a set of processes which can be developed in a

view of separated document. There are the following safety and

security processes which have to be reflected in the SSMP [1]:

– Human Resource Management (see 25.1.2);

– Configuration Management (see 25.1.3);

– Tools Selection and Evaluation (see 25.1.4);

– Verification and Validation (see 25.3);

– Requirements Tracing (see 25.2.4);

– Documentation Management (see 25.1.5);

– Safety and Security Assessment (see 25.1.6).

Also SSMP has to cover the following issues (see Fig. 25.1) [2,3]:

– Project Policy and Strategy is a declarative description of how

and why the goals of the project will be achieved;

– Project Management is reasonable applicable to project

performance since, for example, the IEC 61508-2 (Annex B) requires

applying this method to protect the product against systematic failures;

– Quality Management System it important to implement quality

for all products and processes; special attention is paid to interaction

with suppliers of products and services that affect safety and security;

– Information Security Management System (ISMS) has to cover

activities in accordance with requirements of ISO/IEC 27000

“Information technology – Security techniques – Information security

management systems” or any other relevant ISMS framework [4];

– Safety & Security Life Cycle has to be described in SSMP stage

by stage (see 25.2).

25. Safety and security management of IoT

320

Fig. 25.1 – Structure of Safety and Security Management Plan

(SSMP)

All the above activities cover both safety and security issues.

Additionally ISMS has to cover activities like the following: asset

management, identification and authentication, access control, system

perimeter protection, work stations, servers, and other devices

protection, network and communications protection, cloud

infrastructure protection, database protection, cryptography, monitoring

and recovery, incidents response and investigation. All appropriate

measures and activities have to be implemented for the considered IoT

system.

25. Safety and security management of IoT

321

25.1.2 Human resource management

For detailed personnel management planning, an appropriate

Human Resource Management Plan has to be developed. Note that this

plan does not apply to the organization as a whole, but only to the

participants in the project of IoT system development and certification

against safety and security requirements. The personnel management

plan should contain (see Fig. 25.2):

– Organizational chart of the project with a description of project

roles;

– A list of project participants indicating project roles and

responsibilities for planning and performing work at various stages of

the life cycle;

– The competence matrix and the conclusions on the adequacy or

lack of competencies of the appointed performers, i.e. what knowledge

and skills are required for a particular project role and to what extent a

particular employee corresponds to them;

– Personnel training activities aimed at achieving and maintaining

the above mentioned competences that are critical for the

implementation of the project; training plans and reports should be

documented;

– Communication plan for the project participants;

– A list of the signatures of personnel, indicating the

familiarization with this plan.

Fig. 25.2 – Structure of Human Resource Management Plan

25. Safety and security management of IoT

322

25.1.3 Configuration management

When defining configuration items in the context of safety and

security, it is important to understand that they include not only source

codes and program builds, but also development and testing tools, a

complete set of design, user, and any other relevant documentation,

including design documentation, according to which all mechanical,

electrical and electronic components are manufactured (see Fig. 25.3).

Such a structure can serve as the basis for the project repository.

Fig. 25.3 – A set of configuration items of IoT system

Configuration management directly depends on the used electronic

document management tools, however, some the following general

points can be included in the Configuration Management Plan (see

Fig. 25.4):

– The roles and responsibilities of project participants in the

configuration management process; the Configuration Management &

Change Control Board of the key project participants should be

organized with all those, whose opinions are important to consider

when making changes;

25. Safety and security management of IoT

323

– An approach to planning and maintaining the configuration

management process;

– Resources of the configuration management process, first of all,

the applied tools of electronic document management (SVN, Git, etc.);

– The procedure for the identification of the configuration items

and the formation of baselines (basic versions);

– The procedure for applying tools to control the versions of

software and hardware components of the product and to account for

their status;

– The procedure for accessing configuration components and

backup storage;

– The procedure and periodicity for configuration audits;

– The procedure for analyzing and eliminating the detected defects

and bugs including those found during operation;

– The procedure for change control, including impact analysis and

validation of changes.

Fig. 25.4 – Structure of Configuration Management Plan

25. Safety and security management of IoT

324

25.1.4 Tools selection and evaluation

The IEC 61508 “Functional safety of electrical/ electronic/

programmable electronic safety-related systems” states the following

tools classification depending on the degree of influence on the final

product, system, or software (see Fig. 25.5):

– Class T1 tools do not generate any outputs that directly affect the

executable code; it includes text and image editors, configuration

management tools (those do not directly generate code), action & bug

trackers;

– Class T2 tools support testing and other types of verification and

validation (for example, static code analysis or test coverage analysis);

there is no direct impact on the executable code, however, a problem in

the test tools may lead to errors in the software that may not be

detected; this class should include not only software, but also software /

hardware simulators of input / output signals; it should be noted that

design tools for mechanical, electrical and electronic components (for

example, printed circuit boards design tool) can also be assigned to

class T2;

– Class T3 tools generate outputs that directly affect the executable

code, such as translators and compilers that are components of

Integrated Development Environments (IDE) & Software Development

Kits (SDK), scripts to support builds and controller logic configuration.

Fig. 25.5 – Tools classification

25. Safety and security management of IoT

325

To ensure compliance with safety and security requirements, it is

advisable to develop a special report on the selection and evaluation of

tools that shall cover the following issues (see Fig. 25.6):

Fig. 25.6 – Structure of Tools Selection and Evaluation Report

– A description of the used stack of tools (both software and

hardware, both commercially available and in-house) used for product

25. Safety and security management of IoT

326

development, testing, and supporting processes (configuration

management, documents processing, project management, etc. .) for

each of the tools you should specify: type (to support which process is

used), name, version number, supplier name, class (T1, T2 or T3), as

well as generated outputs in terms of Configuration Items;

– Results of evaluation (analysis) of tools according to a set of

predetermined criteria, such as, for example: the functions performed

and their applicability in this project, experience of use, available

documentation, information about the supplier (market reputation,

quality management system, approach to configuration management

and etc.), the impact on the safety of the product, the errors found and

eliminated, the possible risks of use in terms of failures and the strategy

for managing these risks, the availability of compatible products on the

market programmable chips (for software development and electronic

projects);

– The results of the analysis for compliance with the requirements

for the tools specified in IEC 61508-3, such as:

- for toolts of classes T2 and T3 requirements specifications or

user documentation should be available that uniquely describe how the

operation takes place;

- for tools of classes T2 and T3 their compliance with the

requirements specification or user documentation has to be documented

(for example, in the form of a certificate);

- the versions of the tools used should be monitored, since not all

versions can meet the specified conditions; all project participants must

use the same version; for transitions between versions the appropriate

procedure should be applied;

- if the tools are used as a single technological complex (for

example, code and tests are generated based on the specification), their

compatibility with each other should be tested.

25.1.5 Documentation management

For detailed documentation management a related Documentation

Plan has to be developed. That plan does not apply to the organization

as a whole, but only to the participants of a considered project for

developing a product important to safety and security. The

Documentation Plan has to cover the following issues (see Fig. 25.7):

25. Safety and security management of IoT

327

– Requirements to identification, development, execution,

coordination and approval of documents;

– Review procedures and criteria for evaluating documents (for

example, in the form of checklists);

– A list of project documents and allocation of responsibility for

the development, review and approval;

– The procedure for access to documents and access rights of

project participants;

– The procedure for making changes to documents, accounting

policy and version changes;

– Requirements to use of electronic document management

system;

– A structure of the project repository.

Fig. 25.7 – Structure of Documentation Plan

25.1.6 Safety and security assessment

To assess safety and security during the project, periodic safety

and security audits are conducted. These audits can be either internal

(conducted by the project team) or external (performed by the third

party). Another kind of audits is the certification audit, which is

conducted upon completion of the project work by the certification

authority. According to the results of the certification audit, a certificate

of compliance with the standards requirements is issued. In addition,

the certification authority may also participate in periodic audits. Audits

should be conducted according to pre-developed plans. In the audit

25. Safety and security management of IoT

328

plan, the following issues have to be defined (see Fig. 25.8 as an

example for Functional Safety Audit):

Fig. 25.8 – Structure of Functional Safety Audit Plan

– Periodicity of audits (for example, at the completion of each of

the development stages);

– Areas of assessment in terms of the structure of products and

processes;

– Involved participants, organizations and other required resources

(temporary, financial, required tools, etc.);

– The level of independence of auditors; as noted above, audits can

be internal and external; in general, the issue of independence in

evaluating safety has its traditions in various industries and countries;

– Competencies of the employers performing the audit;

– Expected results;

– Corrective actions performance;

– An approach to document audit results and requirements for the

content of audit report, which shall be issued based on the results of

audits;

– Checklists, including a specific set of requirements (issues),

compliance with which should be evaluated during the audit; the initial

25. Safety and security management of IoT

329

data for compiling an audit checklist are the requirements of SSMP and

other plans related to ensuring of safety and security.

25.2 Safety and security life cycle for IoT

25.2.1 Overall life cycle

Existing standards do not describe a life cycle for IoT systems.

Thus, we propose interpretation of Safety & Security Life Cycle

(SSLC) based on requirements to critical programmable systems (see

Fig. 25.9). Used abbreviations are given below.

Fig. 25.9 – V-shape Safety & Security Life Cycle

The content of the SSLC stages and the relevant documents are

detailed in subsections 25.2.2, 25.2.3. The life cycle model includes the

sequentially performed steps (in the diagram, the steps are indicated by

the names of the final documents). For top-down branch details of

design is performed from system level to hardware and software parts.

For down-top branch staged integration with appropriate testing is

performed before for software and hardware parts, and after for

programmed component and for system as whole.

25. Safety and security management of IoT

330

25.2.2 Safety and security life cycle: design top-down brunch

Step by step description of the design details has to be done for

IoT system and it hardware and software parts. This design

development includes the following stages (see Fig. 25.9).

Development of the product concept means creating of a top-level

concept document (for example, a contract) which defines the needs of

enterprises or businesses and automation processes, including the

identification of hazards and threats.

Development of the Safety Requirements Specification (SRS)

covers describing the system in the form of a “black box”, that is, “what

it is performed” and not “how it is performed”. The SRS has to contain

functional and safety requirements, including modes, time

characteristics, interfaces, signals, self-diagnostics, periodic testing,

limiting external conditions and other.

Review of the SRS for compliance with the requirements of the

Concept is a stage of Verification and Validation (V&V) process.

Development of the System Architecture Design (SAD) represents

the system in a view of a “white box”, that is, “how it is performed”,

and not “what it is performed”, including a detailed structure and

behavior description.

Review of the SAD for compliance with the requirements of the

SRS is a stage of V&V.

Development of the Hardware Design covers creating of design

documentation for hardware which includes both projects of electronic

boards and drawings of mechanical structures and electrical parts,

including cables, power supply and interface components for field

equipment (sensors and actuators).

Review of the Hardware Design for compliance with the

requirements of the SAD is a stage of V&V.

Failure Mode, Effect and Criticality Analysis (FMECA), is the

stage of V&V process (see 24.2.4). When performing FMECA, the

hardware structure is primarily taken into account, however, the

diagnostic and fault tolerance mechanisms implemented in the software

are also taken into account.

Development of the Software Design covers creating of

documentation for the software on the basis of which coding is carried

out.

25. Safety and security management of IoT

331

Review of the Software Design for compliance with the

requirements of the SAD is a stage of V&V.

Software Coding covers creating of source code development.

Static Code Analysis (SCA) is a stage of V&V when code is

verified for compliance with the Software Design including coding

rules and others.

25.2.3 Safety and security life cycle: integration down-top brunch

Step by step integration of hardware and software parts has to be

done for IoT system. This integration and associated testing include the

following stages (see Fig. 25.9).

Software Testing is a stage of V&V when code is verified for

compliance with the Software Design. It includes unit and integration

testing, as well as both functional and structural testing. Before testing,

the Software Test Plan and Specification (TP&S) has to be developed,

and the results shall be documented in the Software Test Report (TR).

Fault Insertion Testing is a stage of V&V when code is verified for

compliance with the results of FMECA. Testing is performed after

seeding defects in hardware and software. Inputs for testing are

produced by FMECA in the part of analysis of the implementation of

self-diagnostics. After that malfunctioning hardware and software is

tested to check implementation of self-diagnostic functions.

Integration Testing is a stage of V&V when integrated system

parts are verified for compliance with the SAD.

Validation Testing is a stage of V&V when integrated system is

verified for compliance with the SRS. Validation may include, in

addition to functional testing, also testing for resistance to external

environmental impacts.

25.2.4 Requirements tracing

Requirements tracing is one of the processes of a wider area of

knowledge called Requirements Engineering [5]. Requirements tracing

is a method for managing changing requirements and related artifacts.

Requirements tracing solves three main tasks:

– To ensure the implementation at the lower level of all the

requirements of the upper level,

– To prevent from undocumented functions appearing on the lower

level,

25. Safety and security management of IoT

332

– To support testing of all requirements.

Specialized software is used to manage requirements. One of the

most famous of these tools is IBM Rational DOORS. To perform

requirements tracing, documents must be prepared for this process by

arranging requirements identifiers and tags that define the boundaries of

the wording of requirements.

In the considered life cycle (see Fig. 25.9), requirements are traced

between design documents as follows. First, direct tracing of

requirements from SRS to SAD is performed. Then backtracking of the

requirements from SAD to the SRS is performed in order to make sure

that the SAD does not include extra functionality that is not

documented in the SRS. After SAD, the design process is divided into

two streams, which are Hardware Design & Software Design. Forward

and backward tracing is performed for both documents. Hardware

Design includes mainly drawings in which it is problematic to place

tags, so the Hardware Design Review Report is laid out under the

tracing (see Fig. 25.10).

During testing, requirements tracing is done by extracting

requirements from project documents. For complicated projects, the

development of test documents can take place in two stages. First, a test

plan is developed, containing a list of test requirements, and then test

cases are developed for each requirement in the test specification.

During testing, direct tracing of requirements is carried out from the

project document to the test plans and specifications, and then to the

testing report. For testing by the method of seeding defects, the list of

tests is extracted from the FMECA report by analyzing self-diagnosed

failures.

For a reasonable set of failures, a set of tests is made, on which

diagnostic functions are checked. Backward tracking is not critical here,

because if additional tests are performed that are not due to project

documents, this will not affect safety and security (see Fig. 25.11).

25. Safety and security management of IoT

333

Fig. 25.10 – Requirements tracing for design stages

Fig. 25.11 – Requirements tracing for testing stages

25. Safety and security management of IoT

334

25.3 Review, analysis and testing techniques for IoT

25.3.1 Documents review

Document review performed for design of IoT system is the

process whereby review team to a case sorts through and analyzes the

documents and data. During review, a design document has to be

verified against input requirements [2].

Assessment criteria of documents include compliance of

documents with a requested set of functional and non-functional

requirements. Requirements stated in the document have to be

verifiable and testable, as well as feasible. Formal and semi-formal

methods can be applied to describe design functionality. Quality criteria

are assessed to ensure a document is clear, precise, unambiguous,

maintainable and understandable. If requirements tracing is

implemented, it has to be an additional activity of documents review

related to check how a document is fit for tracing.

All criteria of a document assessment are stated in a document

check-list, which is used as a tool of document review.

For software design document some specific assessment criteria

have to be stated in relation with desirable software architecture. There

are the following assessment criteria for software design documents

review/

Software architecture has to be as simple as possible. It should not

be many levels of hierarchy. It should not be much complexity from

point of view of program brunches and loops. It should be using of as

many standardized and proven in use components as possible.

Software architecture has to have relationship with the software

requirements, and this relationship has to be clearly explained and

motivated. Also it can be approved via requirements tracing. All

requirements have to be covered. Functionality which is not described

in requirements has not to be implemented in architecture. Flexibility of

the architecture has to be demonstrated.

Components and interfaces of software architecture have to be

precisely described. Routine kind, name, parameters and their types,

return type, pre- and post-condition, usage protocol etc. have to be

described. File name, format, permissions have to be described.

Software architecture can be described in a view of different UML

diagrams which have to represent logical, process, and physical view.

25. Safety and security management of IoT

335

All the following cross-cutting issues have to be resolved:

exception handling, initialization and reset, memory management,

built-in test facilities.

25.3.2 Static code analysis

SCA is the analysis of computer software that is performed

without actually executing programs, in contrast with dynamic analysis,

which is analysis performed on programs while they are executing [6].

In most cases the analysis is performed on some version of the source

code, and in the other cases, some form of the object code. SCA is

usually combined with code review. Code review is performed

manually and it is similar with documents review. SCA supposes using

automated tools.

There are different methods of SCA, and the most important of

them are described below.

Coding rules verification is checking of software code against

some requirements to coding, for example, using of forbidden code

construction, coding style, valuables naming, etc. These rules are

described in coding standards.

Control flow analysis checks program control graph against using

knots and complicated loops constructions.

Software complexity analysis checks such parameters as quantity

of loops and binary decisions, quantity of program interfaces, entrance

and exit points, etc.

Formal methods are the term applied to the analysis of software

and computer hardware whose results are obtained purely through the

use of rigorous mathematical methods. The mathematical techniques

used include semantics and abstract interpretation.

25.3.3 Functional testing

Functional testing is a type of software or system testing whereby

the system is tested against the functional requirements [6]. Functions

are tested by feeding them input and examining the output. Functional

testing ensures that the requirements are properly satisfied by the

application. This type of testing is not concerned with how processing

occurs, but rather, with the results of processing. It simulates actual

25. Safety and security management of IoT

336

system usage but does not make any system structure assumptions. For

IoT functional tests are performed for software as well as for all levels

of integrated system, including devices, networks, clouds and

application terminals.

TP&S has to be developed before testing implementation. Test

plan is developed by traceable extraction of requirements from design

documents. 100% of requirements have to be tested. After that test

cases have to be developed for each of the requirements. Some test

cases are simple but some test cases can include many test scenarios.

Acceptance criteria have to be developed for every test case.

Test tools have to be proven in use and evaluated before its

selection for some specific IoT system project. Automated tests can be

implemented when it is reasonable. Functional tests results have to be

documented in the TR.

A feature of software code verification is the analysis of software

criticality, during which various software modules are differentiated

depending on their participation in safety and security functions. This

allows concentrating while providing the focus on the most responsible

software and reasonably reducing the scope of measures to ensure the

safety and security for the secondary software.

To perform a software criticality analysis, a method called

HAZOP (Hazard and Operability) analysis, that is, an analysis of

hazards and functioning, can be applied. As a result of performing

analysis for software, the performed scope of diagnostic functions can

also be justified and initial information for performing FMECA can be

obtained.

25.3.4 Code structural testing

Structural testing also known white-box testing is a method of

testing software that tests internal structures or software as opposed to

functional testing [6]. In structural testing an internal perspective of the

software are used to design test cases. This is complimentary to

functional testing. The tester chooses inputs to exercise paths through

the code and determine the expected outputs. Usually it is performed

during unit testing.

At the integration level structural testing can be implemented for

checking path between units. The following coverage criteria can be

applied for structural testing: branch coverage, statement coverage,

25. Safety and security management of IoT

337

decision coverage, modified condition / decision coverage (MC/DC),

path testing, etc.

This is complimentary to the basic functional testing, and has to be

documented in the TP&S as well as in the TR. Test coverage criteria

have to be documented.

When functional tests are performed, structural test coverage can

be defined for the functional tests. 100% code coverage can indicate no

additional structural tests are needed. However, if code coverage is less

than 100%, then additional structural tests cases have to be developed

to cover the rest. If finally obtained code coverage is less than 100%, it

has to be augmented.

25.4 Work related analysis

Safety and security management area is well known and nowadays

it is more practical that theoretical. It means there are not many

researches in this area. Achieved technological level is committed in

modern standard, for example, such as IEC 61508 “Functional safety of

electrical/electronic/programmable electronic safety-related systems” or

ISA/IEC 62443 “Security for Industrial Automation and Control

Systems”. Concerning IoT it is difficult to identify issues which would

be specific from point of processes management.

For functional safety management there some published

methodologies directed to certification of safety critical systems [1-3].

Agile development methodologies are widely used for development of

non-critical software. However it seems reasonable to use agily

methods for safety critical applications taken into account safety

requirements. So there are researchers who pay attention to combine

and implement agile and safety methodology [7].

ISMS frameworks are developed by some institutions, for

example, by National Institute of Standards and Technologies

(NIST) [4]. Also NIST analyzes the best practices and standards

relevance for IoT [8,9]. In 2019 NIST is planning to issue a new report

named “Considerations for Managing Internet of Things (IoT)

Cybersecurity and Privacy Risks”, which has been already drafted.

For different techniques of software testing and static analysis

there are many different technics and even a brief review of this area

would take many pages. For example, researchers of University of

25. Safety and security management of IoT

338

Coimbra pay attention to testing of heterogeneous platforms

interoperation. To implement that, they developed special online

service, which can be applicable for IoT systems and components [10].

In area of static code analysis the same team is working to investigate

vulnerabilities in the source code of web applications [11]. The

obtained results can be applied for safety and security critical IoT

systems.

Conclusions and questions

Safety and security management issues are a part of critical IoT

systems requirements which are extracted from appropriated standards,

good practices and frameworks. Safety and security management

contain the following main issues:

– Human Resource Management;

– Configuration Management;

– Tools Selection and Evaluation;

– Verification and Validation;

– Requirements Tracing;

– Documentation Management;

– Safety and Security Assessment.

Safety and Security Management Plan has to be developed and

implemented as an umbrella document considering the above parts.

Safety and Security Life Cycle implementation is a core of

management processes. This life cycle is V-shaped, so it contains top-

down brunch related with design and down-top brunch related with

integration. Verification and validation activities have to be performed

after each of design and integration stage to confirm compliance of the

stage inputs with obtained output results. Verification and validation

methods include documents review, static code analysis, as well as

functional and structural testing.

In order to better understand and assimilate the educational

material that is presented in this section, we invite you to answer the

following questions.

1. What requirements should be taken into account for managing

and assessment of safety and security?

2. What structure of SSMP has to be implemented?

25. Safety and security management of IoT

339

3. What documents can be developed to supplement the functional

safety management plan, and in what cases it is advisable to

develop such documents?

4. What structure should have Human Resource Management

Plan?

5. What part of the Human Resource Management Plan should be

developed during the preparatory work for the certification

project?

6. List the components of the IoT system configuration.

7. What structure should have Configuration Management Plan?

8. Describe the algorithm of change control for the configuration

items.

9. Describe the computer tools classification.

10. Describe the typical set of tools used in IoT systems projects.

11. What structure should have Tools Selection and Evaluation

Report?

12. What are the criteria for tools selection and evaluation?

13. What is the relationship between tools, coding rules and software

verification?

14. What structure should have Documentation Plan?

15. What types of audits are conducted to assess safety and security?

16. What structure should have Safety and Security Audit Plan?

17. Describe a structure of V-shape life cycle.

18. What is a difference between software life cycle and IoT system

life cycle?

19. What is a purpose of requirements tracing?

20. Which design and test documents have to be covered with

requirements tracing?

21. Describe documents review method.

22. Describe static code analysis method.

23. Describe functional testing method.

24. Describe structural testing method.

References

11. Скляр В.В. Обеспечение безопасности АСУТП в

соответствии с современными стандартами. Инфра–Инженерия,

2018.

25. Safety and security management of IoT

340

12. Medoff M., Faller R. Functional Safety – An IEC 61508 SIL 3

Compatible Development Process. exida L.L.C., Sellersville, PA, USA,

2010.

13. Smith D., Simpson K. Functional Safety. A Straightforward

Guide to applying IEC 61508 and Related Standards. Elsevier

Butterworth–Heinemann, Oxford, UK, 2004.

14. NIST SP 800-53 Revision 4, Security and Privacy Controls for

Federal Information Systems and Organizations. National Institute of

Standards and Technologies, 2015.

15. Standard glossary of terms used in Requirements Engineering,

Version 1.3. Requirements Engineering Qualification Board, 2014.

16. Standard glossary of terms used in Software Testing,

Version 2.3. International Software Testing Qualifications Board, 2014.

17. Hanssen G., Stålhane T, Myklebust T. SafeScrum® – Agile

Development of Safety-Critical Software. Springler, 2018.

18. NISTIR 8200, Interagency Report on the Status of International

Cybersecurity Standardization for the Internet of Things (IoT). –

National Institute of Standards and Technologies, 2018.

19. NIST SP 1500-201, Framework for Cyber-Physical Systems.

National Institute of Standards and Technologies, 2017.

20. Martins B., Laranjeiro N., Vieira M. INTENSE:

INteroperability TEstiNg as a Service // Proceedings of 2017 IEEE

International Conference on Web Services (ICWS 2017).

21. Nunes P., Medeiros I., Fonseca J. at all. Benchmarking Static

Analysis Tools for Web Security. IEEE Transactions on Reliability

(2018), 67(3): 1159-1175.

26. Assurance Case for IoT

341

26. ASSURANCE CASE FOR IOT

Prof., DrS V. V. Sklyar, Prof., DrS V. S. Kharchenko (KhAI)

Сontents

Abbreviations .. 342

26.1. Assurance Case fundamentals .. 343

26.1.1. Assurance Case concept and history...................................... 343

26.1.2. Standards for Assurance Case ... 346

26.2. Safety and security techniques and measures for IoT............... 347

26.2.1. Claims, Arguments and Evidence (CAE) notation 347

26.2.2. Update and application of Claims, Arguments and Evidence

(CAE) notation .. 350

26.2.3. Goal Structuring Notation (GSN) .. 356

26.3. Security informed and energy efficiency informed Assurance

Case for IoT ... 357

26.3.1 Tools for development of Assurance Case 357

26.3.2. Assurance Case structure for IoT systems 360

26.4 Work related analysis .. 363

Conclusions and questions... 364

References ... 366

26. Assurance Case for IoT

342

Abbreviations

CAE – Claim, Argument and Evidence

GSN – Goal Structuring Notation

IEC – International Electrotechnical Commission

ISO – International Standardization Organisation

PMM – Power Modes Management

26. Assurance Case for IoT

343

26.1. Assurance Case fundamentals

26.1.1. Assurance Case concept and history

Final safety and security assessment is running after completion of

all development, verification and validation stages. In this section we

discuss how can all project artifacts be represented for safety and

security assessment, and what is the way to most effectively confirm

compliance with the safety and security requirements? The answer to

these questions is provided by the Assurance Case methodology, which

is widely used in the practice of safety and security assessment.

The Assurance Case is a structured set of arguments and

documentary evidence that justify the compliance of a system or

service with specified requirements [1].

Licensing and certification authorities check the Assurance Case,

as an integral document proving compliance with the entire set of

requirements to safety and security. The Assurance Case can be either

compiled by the project team or outsourced.

The historical and theoretical origins of the Assurance Case lie in

the field of logical reasoning, such as operations with logical

predicates, including the implication In 1958, the British philosopher

Stephen Tulmin published the book “The Uses of Argument” [2], in

which he expanded the operation of logical inference with the degree of

confidence and additional arguments and counter-arguments. In

addition, Toulmin proposed to present the argument in graphical form,

and this approach has since become widespread. Tulmin's notation

operates on the following entities (Fig. 26.1): data (D) is the initial data

for analysis, claim (C) is the goal of logical implication output (If D So

C), warrant (W) is an additional argument, qualifier (Q) is the degree of

confidence in the results of inference, rebuttable (R) is an additional

counter-argument. This approach was initially used exclusively in the

humanities.

At the same time, after the Second World War, the rapid

development of complex industries, such as nuclear energy, space

technology, oil and gas, chemical industries, and transport began. All

this was accompanied by the introduction of new at that time

automation technology. As a result, humanity was faced with man-

made disasters of unprecedented scale.

26. Assurance Case for IoT

344

Fig. 26.1 – Argumentation proposed by Stephen Toulmin

Also, in the post-war world, human life was recognized as the

highest value. The level of acceptable technical risk was set by law at a

fairly hard-to-reach level of 10-6 1 / year, i.e. one death per million

people per year from technical risks.

Thus, the predecessor of the Assurance Case is historically the

Safety Case. The concept of the Safety Case originated in the 1950s,

although the term itself appeared later. The first regulatory document

requiring the development of a Safety Case for hazardous industrial

facilities is the European Union’s “CIMAH (Control of Major

Accidents Hazards) Regulations”. The widespread introduction of the

Safety Case into practice began to occur after an unprecedented

accident on the Piper Alpha oil platform in the North Sea, which

claimed the lives of 167 people in 1988 [3].

All of the above has led to new approaches in safety assessment

and assurance. In the 1990s. Tulmin’s argument was used as the basis

for the development of semi-formal notations to justify safety [1]. The

work was done in the UK, at the University of York, where Goal

Structuring Notation (GSN) was developed. Adelard developed the

Claim, Argument and Evidence (CAE) notation in parallel. These

notations are used in the present, and then we consider them in more

detail (see subsection 26.2).

Initially, the focus was on functional safety issues (Safety Case),

then with the advent of the information security problem, a similar

26. Assurance Case for IoT

345

approach was extended to the Security Case, and with it came the

understanding that it was necessary to work simultaneously on

providing both safety and security features. Currently, the term

Assurance Case means the justification of both safety and security.

In justifying safety and security, we need to confirm the

compliance of a certain system or software with the requirements set.

At the same time compliance with a particular requirement is the goal

of the Assurance Case. In addition, there is a set of documented

evidence that requirements are met. To associate evidence with goals

and requirements, an argumentation system is used, which is given

special attention in the Assurance Case (Fig. 26.2). The lack of

arguments or evidence indicates a failure to comply with safety and

security requirements [1].

Fig. 26.2 – Objectives, arguments and evidence of safety

The Assurance Case should be developed in stages throughout the

life cycle, starting from the first stage of the concept and contract

(Fig. 26.3). Then, over the course of development, deviations from

requirements can be quickly identified and corrected with less cost. At

the same time, assessment of the implementation of both product

requirements and requirements for safety and security management

processes is supported.

26. Assurance Case for IoT

346

Contract
Certification
Framework

Functional
Requirements

Assurance Case
(Not Functional
Requirements)

Requirements
Specification

Supporting
Processes

Implementation

Life Cycle
Implementation

Safety
(Security)

Certification

Safety (Security)
Management

Plan

Reference

Fig. 26.3 – General approach to applying the Assurance Case in a

certification project

26.1.2. Standards for Assurance Case

To date, regulatory documents have been developed that regulate

the use of the Assurance Case in the nuclear power industry, aviation,

the automotive industry, etc. The most general provisions for the

application of the Assurance Case relating to system and software

engineering are given in the standards of the ISO/IEC 15026 series

“Systems and software engineering – Systems and software assurance”

[4], which includes four parts:

– Part 1: Concepts and vocabulary;

– Part 2: Assurance case;

– Part 3: System integrity levels;

– Part 4: Assurance in the life cycle.

26. Assurance Case for IoT

347

Object Management Group (OMG) developed Structured

Assurance Case Metamodel (SACM) [5]. Goal Structured Notation

Community Standard [6] is closely related with OMG SACM providing

the GSN description.

ISO 26262:2011 “Road vehicles – Functional safety” standard in

ten parts requires the Safety Case implementation for automotive

systems. The document “Common position of international nuclear

regulators and authorized technical support organizations – Licensing

of safety critical software for nuclear reactors” [7] describes software

Assurance Case applicability in nuclear industry recognized by such

countries as Belgium, Canada, Germany, Finland, Spain, Sweden, and

UK. The document “European Organization for Safety of Air

Navigation (EUROCONTROL) – Safety Case Development Manual”

[8] describes Safety Case applicability for European Air Traffic

Management Systems.

In the U.S. two huge government organizations, such as National

Aeronautics and Space Administration (NASA) and Department of

Homeland Security (DHS) have already implemented Assurance Case

approach for their products, services and regulatory documents. NASA

established the Robust Software Engineering Group in the Intelligent

Systems Division for support of Independent Verification and

Validation [9] that is implemented by NASA for space programs as

well as for Unmanned Aircraft Vehicles. The DHS Cyber Emergency

Response Team (US-CERT) implements Assurance Case methodology

to establish security assurance ecosystem. The last activity, including

lecture courses providing, is widely supported in Software Engineering

University, which is a part of Carnegie Mellon University [10].

26.2. Safety and security techniques and measures for IoT

26.2.1. Claims, Arguments and Evidence (CAE) notation

The CAE (Claim, Argument and Evidence) notation operates with

three specified entities: claim indicates the achievement of the required

system properties, evidence provides a documented basis for

argumentation, demonstrating the achievement or non-achievement of

goals, and arguments are built using inference rules and link evidence

with objectives. Arguments such as deterministic (or logical),

26. Assurance Case for IoT

348

probabilistic, and qualitative are commonly used. To designate claims,

arguments and evidence, graphic primitives are introduced that have

different shapes (Fig. 26.4).

Fig. 26.4 – Claim, Argument and Evidence (CAE) notation:

main components

Building a hierarchy of goals and sub-goals is the first step in the

development of the Assurance Case. As shown in the diagram

(Fig. 26.4), the structure of goals, arguments and evidence is not

necessarily three-level, for example, additional sub-goals can be used to

support the argument.

26. Assurance Case for IoT

349

As an example of using CAE notation, consider the general case of

the formation of requirements for system functional safety [11]. The

main goal is adequate, accurate and complete wording of the

requirements. For this, the following subgoals must be achieved

(Fig. 26.5):

– Requirements for the management of functional safety have to

be defined;

– Regulatory requirements established in standards, laws and other

regulatory documents have to be defined;

– Safety criteria have to be defined;

– Integration requirements have to be defined.

Fig. 26.5 – CAE notation: an example for functional safety

This diagram does not show the argumentation system, since this

is a general case, and the argumentation strategy may be different. The

requirements stated in regulatory documents, the results of risk

analysis, etc. are used as evidence.

26. Assurance Case for IoT

350

26.2.2. Update and application of Claims, Arguments and

Evidence (CAE) notation

Usually CAE notation is applied in graphical view, but tabular

view can also be used. Claim, Argument and Evidence should be

located respectively in the fields of the table (Table 26.1). Let’s

consider an example from the standard IEC 61508 “Functional safety of

electrical/ electronic/ programmable electronic safety-related systems”

relating to personnel management (see subsection 25.1.2).

Table 26.1 – A table view of CAE notation

IEC

61508

Claim Argument Evidence

1/6.2.1 Responsibilities of

the project

participants

HR1:

Organizational

Chart.

HR2: Project Roles

Description

–

1/6.2.3 Understanding by the

project participants

of their roles and

responsibilities

HR6: Participants

and Signature List

–

1/6.2.4 Communications of

the project

participants

HR5: Participants

Communications

Plan

–

1/6.2.13 Evaluation and

assurance of the

project participants

competencies

HR3: Competency

Matrix.

HR4: Training

Plans and Training

Records Reference

–

1/6.2.14 Issues affected to the

project participants

competencies

HR3

HR4

–

1/6.2.15 Documentation of

the project

participants

competencies

HR3

HR4

–

26. Assurance Case for IoT

351

IEC

61508

Claim Argument Evidence

1/6.2.16 Monitoring of safety

management

processes

HR1

HR2

–

Table 26.1 describing CAE contains fields used according to the

following purpose:

– IEC 61508 – a reference to part (before the slash "/") and clause

of IEC 61508;

– Claim – a brief statement of the requirement; note that for

convenience, the entire requirement can be placed in a table according

to the text of the standard; in the table under consideration, only those

requirements related to personnel management are selected;

– Argument – an approach to represent compliance with the

requirement; several approaches can be applied to ensure compliance

with the same requirement (one-to-many relationship), and the same

approaches can be used for different requirements (many-to-one

relationship or many-to-many relationship); if we consider the Human

Resource Management Plan (Fig. 25.2), it becomes clear that its

structure is determined by the arguments derived from the requirements

of IEC 61508; a graphical representation of the structure of the Human

Resource Management Plan confirms the effectiveness of using the

graphic Mind Map notation for a simplified description of the

Assurance Case; the arguments are assigned the numbered identifiers

from HR1 to HR6, also according to the order of their entry into the

structure of the Human Resource Management Plan (Fig. 25.2);

– Evidence – in this example, that field of the table is not

populated, since the assessment of compliance with the requirements is

determined for each specific project based on an audit of the developed

documents and the implemented processes.

The table describing the Assurance Case may also include fields

for independent evaluation by a third party and description of corrective

actions. Consider, by the example of the Human Resource Management

Plan, the application of the process approach to managing and

evaluating the safety at all stages of the life cycle. To fulfill this task,

we modify the CAE notation. A reasoning strategy may be supported

26. Assurance Case for IoT

352

by compliance criterion and coverage criterion. Compliance criterion

clarifies how compliance with requirement and claim can be achieved.

Coverage criteria applies to multiple hierarchical requirements (for

example, when all requirements must be verified during the testing

process). Thus, CAE notation is transformed into CAEC notation

(Claim, Argument, Evidence and Criteria) (Fig. 26.6).

The second component of the amended methodology is the

notation describing the promotion of the Assurance Case through the

stages of the life cycle. V-shaped life cycle is implemented for IoT

system (see subsection 25.2), which includes phased development and

phased verification and validation. Thus, the Assurance Case must be

supplemented after each of the stages of development, verification and

validation (Fig. 26.7).

Evidence Argument Claim

Acceptance
Criteria

Coverage
Criteria

Fig. 26.6 – Claim, Argument, Evidence and Criteria (CAEC)

notation: main components

26. Assurance Case for IoT

353

Development

Verification
&

Validation

Assurance
Case

D V

A

Fig. 26.7 – The relationship between the components of the life cycle

(development, verification and validation, Assurance Case)

This approach is described in the form of DVA notation

(Fig. 26.8), what means Development, Verification & Validation, and

Assurance Case.

The DVA notation includes the following data sets transmitted

between components:

– DI = {di1, di2, ..., diK} – input development process data

transmitted from the previous stage of the life cycle;

– VI(D) = {vid1, vid2, ..., vidL} – the input data of the verification and

validation process transmitted from the development process;

D
DI

V A
AOVI(D) AI(V)

DI(A)

VI(A)

DI(V)

AI(D)

Fig. 26.8 – The relationship between the components of the life

cycle (development, verification and validation, Assurance Case)

– AI(D) = {aid1, aid2, ..., aidM} – input data of the Assurance Case

process, transmitted from the development process;

– AI(V) = {aiv1, aiv2, ..., aivN} – input data of the Assurance Case

process, transmitted from the verification and validation process;

26. Assurance Case for IoT

354

– DI(V) = {div1, div2, ..., divP} – input development process data

transmitted from the verification and validation process (feedback);

– DI(A) = {dia1, dia2, ..., diaQ} – input development process data

transmitted from the Assurance Case process (feedback);

– VI(A) = {via1, via2, ..., viaR} – input data of the verification and

validation process transmitted from the Assurance Case process

(feedback);

– AO = {ao1, ao2, ..., aoS} – output data of the Assurance Case

process (this is also output data of the life cycle stage), transmitted to

the input of the next life cycle stage after resolution of all findings and

anomalies.

The application of the considered CAEC and DVA notations

constitutes an approach called Assurance Case Driven Design [12]. The

goal of the approach is to reduce certification costs by consistently

preparing and correcting the Assurance Case, starting from the very

first stages of the life cycle. Thus, the Assurance Case supports and

guides the development, verification and validation process.

From the point of view of life cycle organization, the application

of the Assurance Case methodology should be coordinated during

development, quality assurance, safety and safety assurance, as well as

during assessment and certification, like DevOps (development and

operation) methodology (Fig. 26.9).

AC

Design
Assessment &
Certification

QA & Safety (Security)
Management

Fig. 26.9 – The diagram of components interaction for

development of the Assurance Case

Let’s consider applying the Assurance Case methodology

throughout the life cycle stages. To do this, we use the example of

assessing the compliance of the Human Resource Management Plan

26. Assurance Case for IoT

355

with the requirements of IEC 61508 (Table 26.1). Below is a list of the

stages of the Safety and Security Life Cycle, including development,

verification and validation (Table 26.2).

At each stage, the compliance of the human resource management

process with each of the requirements of the Human Resource

Management Plan should be verified.

The use of the Assurance Case methodology allows determination

of compliance with the requirements at the argument level {HR1, ...,

HR6}. Records of compliance checking and the associated results are

phased into the documented Assurance Case.

Table 26.2 – The Assurance Case Driven Design application

through Safety and Security Life Cycle (Fig, 25.9)

SSLC stage

ID HR1 HR2 … HR6

Concept

D1 A(D1,HR1) A(D1,HR2) … A(D1,HR6)

SRS

D2 A(D2,HR1) A(D2,HR2) … A(D2,HR6)

SRS

Review

V2 A(V2,HR1) A(V2,HR2) … A(V2,HR6)

SAD

D3 A(D3,HR1) A(D3,HR2) … A(D3,HR6)

SAD

Review

V3 A(V3,HR1) A(V3,HR2) … A(V3,HR6)

HW Design

D4 A(D4,HR1) A(D4,HR2) … A(D4,HR6)

HW Design

Review

V4 A(V4,HR1) A(V4,HR2) … A(V4,HR6)

FMECA

V5 A(V5,HR1) A(V5,HR2) … A(V5,HR6)

SW Design

D5 A(D5,HR1) A(D5,HR2) … A(D5,HR6)

SW Design

Review

V6 A(V6,HR1) A(V6,HR2) … A(V6,HR6)

SW Coding

D6 A(D6,HR1) A(D6,HR2) … A(D6,HR6)

26. Assurance Case for IoT

356

SSLC stage ID HR1 HR2 … HR6

Code

Analysis

and Review

V7 A(V7,HR1) A(V7,HR2) … A(V7,HR6)

SW

Testing

V8 A(V8,HR1) A(V8,HR2) … A(V8,HR6)

Fault

Insertion

Testing

V9 A(V9,HR1) A(V9,HR2) … A(V9,HR6)

Integra

tion Testing

V10 A(V10,HR1) A(V10,HR2) … A(V10,HR6)

Valida

tion Testing

V11 A(V11,HR1) (V11,HR2) … A(V11,HR6)

26.2.3. Goal Structuring Notation (GSN)

GSN (Goal Structuring Notation), like CAE, operates with entities

such as goal (indicated by a rectangle and is analogous to a claim),

argumentation strategy (indicated by a parallelogram and is analogous

to argument), and a solution (indicated by a circle and is analogous to

evidence) (Fig. 26.10).

The context is used for informational support of goal setting.

Assumptions and justifications can be used to support argumentation.

The goal structure is also hierarchical. It should be noted that the GSN

is described in the GSN Community Standard [6], and Structured

Assurance Case Metamodel [5] is developed by Object Management

Group.

26. Assurance Case for IoT

357

Fig. 26.10 – Goal Structuring Notation (GSN) notation:

main components

26.3. Security informed and energy efficiency informed

Assurance Case for IoT

26.3.1 Tools for development of Assurance Case

Today, there are three of the most functional software tools that

are used to create and maintain the Assurance Case. All of them have a

paid license.

The first and the most widely used tool is the ASCE (Assurance

and Safety Case Environment), which has been developed and

maintained by the British company Adelard since the 1990s. In the UK,

the development of the Assurance Case is required by laws and

standards in many areas related to security, so ASCE has a fairly large

market here (Fig. 26.11).

26. Assurance Case for IoT

358

Fig. 26.11 – Adelard ASCE program interface

Adelard ASCE supports both CAE and GSN. The main part of the

tool is a graphic editor, in which additional text or hyperlink

information may be attached to graphic blocks. The program supports

the export of charts in HTML and MS Word formats. It is impossible to

download the ASCE software from the Adelard website on your own;

you must fill out a request for either a 30-day trial version or an

academic license, after which the request will be reviewed by the

company.

The next software tool is Astah GSN (Fig. 26.12) developed by

Change Vision company from Japan. The company was created in

2006. Astah GSN was developed as a part of the Astah Professional

toolkit, which is a media for complex systems modeling.

As the name suggests, this program supports only GSN. In

addition, it can create Mind Map diagrams. In the graphical editor, you

can attach text and hyperlinks to graphic symbols. Charts are saved in

the internal format of the program (*.agml). It supports the export of

diagrams in the form of figures, as well as in the XMI format (XML

Metadata Interchange).

 Fig. 26.12 – Astah GSN program interface

26. Assurance Case for IoT

359

You can download a trial version of the software from the Astah

GSN website. Supported operating systems are Windows, MacOS, and

Linux. The trial version will work 50 days. User manuals and video

demonstrations are also available on the site.

The software tool NOR-STA (Fig. 26.13) was developed by the

Polish company Argevide, which was founded by the staff of the

University of Gdansk. NOR-STA supports its own TRUST-IT notation

(Fig. 26.14), which complies with the provisions of the standard

ISO/IEC 15026. The difference is that, instead of a graphical

representation, the NOR-STA uses a structured hierarchical list.

Entities in hierarchical Assurance Case list are indicated by different

icons. To confirm compliance with the claim, the argumentation

strategy is used, and facts or observations, rationale, assumptions and

sub-claims are used as analogue of the evidence.

Unlike the two previous desktop applications, NOR-STA is used

online and supports distributed team work. For privacy purposes, you

can install NOR-STA on a dedicated server, and then the data

repository will be stored on it.

Fig. 26.13 – NOR-STA program interface

26. Assurance Case for IoT

360

Fig. 26.14 – Trust-IT notation and an example of its application

In the considered example (Fig. 26.1), the main goal is to demonstrate

the absence of errors in the software module. To this end, testing has been

chosen as the argumentation strategy. The rationale for the strategy is the

development and execution of reliable tests. The actual confirmation of

compliance is that the test report does not contain unresolved errors. An

additional sub-goal is to cover all the requirements for the software module

with tests. An own argumentation strategy can be developed for this purpose.

As an assumption we assume that the testing tools used are reliable.

Data can be presented as a GSN diagram, and you can also convert to

Word, Excel, PDF, and XML formats. At the request of the user, a 30-day

trial access can be provided on the NOR-STA website for using this

software.

26.3.2. Assurance Case structure for IoT systems

Fig. 26.15 represents “a big picture” for IoT Green Assurance Case by

joining all elements of assessment. Firstly, Green ITs are directed to support

sustainable development. For that sustainability assurance part is included in

the Assurance Case to check an influence to resources, ecology, society, and

economy. Secondly, the main issues related with safety and security

26. Assurance Case for IoT

361

requirements assurance and assessment shall be incorporated to the

Assurance Case. After that it makes a sense to submit above six Green IT

principles adopted for IoT.

Fig. 26.15 – IoT Green Assurance Case

Power consumption parameters are also included as a part of the

Assurance Case since they provide a well-defined part of requirements to

IoT-based system. For example, processor power consumption can be

calculated in accordance with the following equation:

P = A · C · V2 · f + A · · V · Ishort · f + V · Ileakage,

where the first item measures the dynamic power consumption caused

by the charge and discharge of the capacitive load at the output of each key,

which is equal to the product of the capacity – C, the square of supply

26. Assurance Case for IoT

362

voltage – V, the processor’s frequency – f, and the coefficient A, which

characterizes the activity of the keys in the system; the second item is the

power expended as a result of short-circuit current, which takes place at the

time of switching the logical element; the third item are losses due to current

leakage.

The main specific part of Assurance Case includes specific

requirement to green features that should be implemented for each of

the four of IoT layers.

Device layer includes mainly field sensors and actuators as well as

programmable controllers in a form of on-boar computers. Device layer

is relatively simple and well defined, so for it we can describe common

green features with higher degree of certainty. One of the key

technologies applied at the device layer is techniques of identification

and authentication. For example, Radio Frequency Identification

(RFID) is widely used at the present in IoT systems. It is important to

specify device identification functions to meet Green IT principles.

After that Power Modes Management (PMM) with power-aware

scheduling based techniques shall be implemented at the device layer.

For example, Dynamic Voltage and Frequency Scaling (DVFS) is

widely used for embedded systems to alter the voltage and/or frequency

of a programmable component based on performance and power

requirements.

Micro-architecture solutions support saving energy in specific

components with dynamical reconfiguration. For example, there are

different techniques for buffering, memory compression, memory size

adjusting, cash providing for simultaneous reading / writhing access

etc. Use of distributed cores for calculation allows to manage multitask

environment and assign task to alternative programmable components,

such as Digital Signal Processors (DSP), Field Programmable Gates

Arrays (FPGA) and other. Tasks are assigned depending which

component is more appropriate from the point of view of energy

consumption. Temperature control techniques are used for devices

since a temperature mode affects longevity of components operation.

Finally, signals processing techniques are widely used at the

device layer, so power efficiency of signals processing algorithms and

software can noticeably decrease power consumption.

Wireless Sensor Networks (WSN) with different protocols and

topologies should be based on advanced communication technology

26. Assurance Case for IoT

363

such as, for example, cognitive radio with autocorrecting of power

efficiency parameters or Multiple Input Multiple Output (MIMO) with

enforcement the capacity of communication channel. Since the same

sensors and networks can be used for different application, service

providers operate global and local WSN infrastructure which can be

considered as “Sensor Network as a Service” (SNaaS).

There are a lot of features to be implemented for green clouds

which serve as a platform for the service layer. Modern green data

centers and green servers are based on techniques using PMM,

advanced communications, and advanced power storages.

Successful operation of application layer depends on

implementation of power efficient algorithms in software. From this

prospective a business can be supported with operational intelligence

based on advanced technique of big data and artificial intellect.

26.4 Work related analysis

Existing standards in the area of the Assurance Case as well as

other important publications are considered in 26.1.2. In the present

subsection in addition to the many stories of successful use of the

Assurance Case, we discuss stories when the unsuccessful application

without proper analysis did not allow identifying problems and led to

accidents. As with any methodology, the mere fact of applying the

Assurance Case or any other security measures is not sufficient to

ensure that the hazards are eliminated and the risks are reduced. At the

same time, although the basic goals and philosophy of the Assurance

Case are fairly well defined, there is a limited understanding of how

best to put this methodology into practice.

Similar issues were discussed earlier by different researchers

[13-15]. The main problems, rather than those related to the Assurance

Case methodology, but to the general issues of security assurance and

evaluation, are as follows [14]:

– The “Apologetic Assurance Case”: the Assurance Cases which

avoid uncomfortable truths about the safety and security of systems in

production so that developers do not have to face the (often

economically and politically unacceptable) option of re-design (“X

doesn’t quite work as intended, but it’s OK because...”);

26. Assurance Case for IoT

364

– The Document-Centric View: the Assurance Cases which have

as their aim to produce a document. The goal of the Assurance Cases

should not simply be the production of a document; it should be to

produce a compelling argument;

– The Approximation to the Truth: the Assurance Cases which

ignore some of the rough edges that exist. For example, the Assurance

Cases which claims in a Goal Structured Notation diagram that “All

identified hazards have been acceptably mitigated” and direct the reader

to the Hazard Log when, in reality, the mitigation argument is not so

straightforward;

– The prescriptive Assurance Cases: the Assurance Cases which

have become run-of-the-mill or routine or simply comprise a parade of

detail that may seem superficially compelling but fails to amount to a

compelling argument;

– The Assurance Case Shelf-Ware: the Assurance Cases which are

consigned to a shelf, never again to be touched. The Assurance Case

has failed in its purpose if it is “so inaccessible or unapproachable that

we are happy never to refer to it again”;

– Imbalance of skills: The skills are required of both someone to

develop the Assurance Case and someone to challenge and critique the

assumptions made. Too often, the latter skills are missing.

Based on the analyzed problems in evaluating the safety of

complex systems, an approach to their solution was proposed [13]. This

approach is formulated as a system of principles SHAPED, which

stands for short (“Succinct”), carried out under the control of the

operating organization (“Home-grown”), “Accessible” to all interested

parties, “Proportionate” in terms of focusing on the main dangers and

risks, “Easy-to-understand”, and “Document-lite”.

Thus, the Assurance Case is one of the integral tools for evaluating

and ensuring safety and security, and the effectiveness of its application

depends on the competencies of the specialists involved, the

organization of the process and the correct application of the

recommended principles.

Conclusions and questions

The Assurance Case is a structured set of arguments and

documentary evidence that justify the compliance of a system or

service with specified requirements. Thus, the Assurance Case is an

26. Assurance Case for IoT

365

integral methodology for evaluating safety and security. That allows

building a clear structure of the products and processes artifacts

throughout the entire life cycle. Licensing and certification authorities

will check the Assurance Case, as an integral document proving

compliance with the entire set of requirements to safety and security.

The predecessor to the Assurance Case has historically been the

Safety Case. Regulatory documents requiring the use of the Safety Case

for hazardous industrial facilities appeared in the 1980s. With the

development of information technology and the emergence of cyber

threats, the Security Case began to be developed. As of today, the

Assurance Case usually means the justification of safety together with

security.

The Assurance Case should be developed by stages throughout the

life cycle, starting from the stage of concept and contract. Then, over

the stages of development, deviations from safety and security

requirements can be promptly identified and corrected at lower cost. At

the same time, assessment of the implementation of both requirements

to product processes is supported.

For graphical representation of the Assurance Case, semi-formal

notations such as Claim, Argument and Evidence (CAE) and Goal

Structuring Notation (GSN) are used. In addition, the Assurance Case

may be represented in a table view.

In order to better understand and assimilate the educational

material that is presented in this section, we invite you to answer the

following questions.

1. Define the Assurance Case methodology.

2. What is the history of the development of the Assurance Case

methodology?

3. What types of notations can be used to represent the

Assurance Case?

4. What standards and other regulatory documents govern the

application of the Assurance Case?

5. Give a description of the CAE notation.

6. What are additional criteria for CAE notation?

7. Define the Assurance Case Driven Design approach?

8. Give a description of the GSN notation.

9. What regulatory documents govern the GSN notation?

26. Assurance Case for IoT

366

10. What software tools are used to support the Assurance Case

methodology?

11. Which organizations are the most active in promoting the

Assurance Case methodology?

12. What are the main disadvantages and advantages of applying

the Assurance Case methodology?

13. What role does the human factor play in applying the

Assurance Case methodology?

14. What does the SHAPED system of principles mean for the

Assurance Case methodology?

15. What the basic structure of the Assurance Case for IoT

systems?

References

1. Kelly T. Arguing Safety: A Systematic Approach to Managing

Safety Cases. PhD thesis. Univ. of York, 1998.

2. Toulmin S. The Uses of Argument. Cambridge University

Press, 1958.

3. Cullen W. The Public Enquiry into the Piper Alpha Disaster.

Department of Energy, London, HM Stationery Office, 1990.

4. ISO/IEC 15026, Systems and software engineering – Systems

and software assurance (in 4 parts), 2011-2015.

5. Structured Assurance Case Metamodel, v2.0. Object

Management Group, 2016.

6. GSN Community Standard, Version 1. Origin Consulting

(York) Limited, 2011.

7. Common position of international nuclear regulators and

authorised technical support organisations – Licensing of safety critical

software for nuclear reactors, 2015.

8. Safety Case Development Manual. European Organization for

Safety of Air Navigation (EUROCONTROL), 2006.

9. Denney E., Pai G. Safety Case Patterns: Theory and

Applications. Research report NASA/TM–2015–218492. NASA, 2015.

10. Weinstock C., Goodenough J. Towards an Assurance Case

Practice for Medical Devices, Technical Note CMU/SEI-2009-TN-018.

SEI, 2009.

11. Ye F., Cleland G. Weapons Operating Centre Approved Code

of Practice for Electronic Safety Cases. Adelard LLP, 2012.

26. Assurance Case for IoT

367

12. Sklyar V., Kharchenko V. Green Assurance Case: Applications

for Internet of Things. Green IT Engineering: Social, Business and

Industrial Applications. Studies in Systems, Decision and Control, vol

171. Springer, Cham, 2019.

13. Haddon-Cave C. The Nimrod Review. An independent review

into the broader issues surrounding the loss of the RAF Nimrod MR2

Aircraft XV230 in Afghanistan in 2006. Crown Copyright, 2009.

14. Kelly T. Are Safety Cases Working? Safety Critical Systems

Club Newsletter, Vol. 17, n. 2, 2008.

15. Скляр В.В. Обеспечение безопасности АСУТП в

соответствии с современными стандартами. – Инфра–Инженерия,

2018.

27. Security of IoT Based Blockchain Technology

368

27. SECURITY OF IOT BASED BLOCKCHAIN TECHNOLOGY

DrS. Prof. V. V. Yatskiv, Ass. Prof., Dr. N. G. Yatskiv (TNEU)

Contents

Abbreviations .. 369

27.1. Bases of blockchain technology and examples of application . 370

27.1.1 The principle of the blockchain technology 370

27.1.2 Block structure and Merkle tree ... 372

27.1.3 Blockchain cryptography .. 375

27.2 Consensus algorithms in blockchain technology 377

27.2.1 Proof of Work algorithm .. 378

27.2.2 Proof of Stake algorithm ... 381

27.3 Blockchain technology for the IoT security 384

27.3.1 Blockchain and the IoT ... 384

27.3.2 Benefits of Integrating Blockchain with IoT 388

27.3.3 Main challenges of blockchain in IoT 390

27.4 Work related analysis .. 394

Conclusions and questions... 397

References ... 399

27. Security of IoT Based Blockchain Technology

369

Abbreviations

PoW – Proof of Work

PoS – Proof of Stake

DPoS – Delegated Proof of Stake

LPoS – Leased Proof of Stake

PoI – Proof of Importance

dBFT – Delegated Byzantine Fault Tolerance

PoC – Proof of Capacity

PoA – Proof of Activity

PoB – Proof of Burn

PoET – Proof of Elapsed Time

ADEPT – Autonomous Decentralized Peer-to-Peer Telemetry

GUID – Global Unique Identifier

ECDSA – Elliptic Curve Digital Signature Algorithm

IANA – Internet Assigned Numbers Authority

27. Security of IoT Based Blockchain Technology

370

27.1. Bases of blockchain technology and examples of

application

27.1.1 The principle of the blockchain technology

In 2008, the author or group of authors known under the

pseudonym Satoshi Nakamoto published the paper "Bitcoin: A Peer-to-

Peer Electronic Cash System" with a description of the concept and

principles of the payment system as a peer-to-peer network [22]. In

2009, the Bitcoin cryptocurrency protocol was submitted and the client

application was published. The key feature of the proposed concept was

that online payments between customers are carried out without a

central financial institution that serves as a trusted entity, using

cryptographic methods and a public financial transaction database

(distributed ledger), which consists of a chain of blocks (Blockchain)

[4].

Blockchain is a distributed data structure which consists of the

blocks sequence, each block typically contains a hash pointer as a link

to a previous block, thus forming a chain of blocks (Fig. 27.1).

Blockchain is a new information technology that has wide variety

of uses in many industries. The first and most famous example of the

use of the blockchain technology is the cryptocurrency Bitcoin [22].

Currently, cryptocurrency has become a recognized means of payment,

a virtual currency that is accepted by large and small enterprises,

corporations and services.

The first block in the chain (parent block, genesis block) is

considered as a separate case, since it does not have a previous block

(Fig. 27.1). Blockchain works as a distributed database that records all

transactions on the network. Operations have a timestamp and are

stored in blocks where each block is identified by its cryptographic

hash.

27. Security of IoT Based Blockchain Technology

371

Fig.27.1 – Simplified sequence of blocks

Blockchain is completely stored in each network node. Blockchain

does not require trust between the nodes of the network, since any node

can independently check whether its database copy coincides with

stored copies in other nodes. Let us consider blockchain technology

principle on example of Bitcoin. Cryptocurrency Bitcoin uses the

cryptographic hash function SHA-256 [4]. To verify the data integrity

in the block Merkle tree is used, which represents a special data

structure that contains information about performed transactions.

For this, a hash is calculated from each transaction, and then the

new hash of pair is calculated from each pair of hashes. This procedure

is repeated until only one hash remains. If the pair for the hash is

absent, then it is transferred to a new level without changes (Fig. 27.2).

The blockchain technology, like the Internet, has built-in error

tolerance. While storing information blocks that are identical

throughout the network, blockchain:

– is not able to be controlled by one person;

– does not have a single point of failure.

There are two types of blockchain [12, 21]:

– public blockchain is an open, supplementary database. This type

of block is used in the Bitcoin cryptocurrency. Each participant can

record and read data;

– private blockchain has a record / read data limitation. Only

specific, pre-chosen entities have the ability to create new transactions

on the chain.

Among the features of blockchain it should be emphasized:

27. Security of IoT Based Blockchain Technology

372

1) decentralization - there is no server in the chain. Each

participant is a server. It supports the work of the blockchain;

2) reliability - a blockchain nodes consensus is required to record

new data. This allows to filter operations and record only legitimate

transactions. It is impossible to change the hash.

3) transparency - information about transactions, contracts, and so

on is stored in open access. However, this data cannot be changed;

4) theoretical unlimited - theoretically, blockchain can be

supplemented by records to infinity. Therefore, it is often compared to a

supercomputer;

5) universality - blockchain technology can be applied not only in

the financial area, but it can be integrated into multiple areas

(personality authentification, jurisprudence, real estate, Internet of

Things, etc.).

27.1.2 Block structure and Merkle tree

The transaction group is recorded after the check in a special block

(Fig. 27.2). The block consists of a header and a list of transactions

(TrA, TrB, ...). The block header includes the block hash, previous

block hash (Previous Hash), transaction hash (Merkle Root), and

additional service information (Nonce, Timestamp) [22, 27].

Timestamp indicates when the block was created and provides

evidence that the data in the block existed at a specific time.

The following data is required to create a new block: hash of the

previous block in the chain; Merkle hash for transactions that must be

included in a block; time (Timestamp) and disposable code (Nonce),

selected in a pseudo-random manner. It is necessary to calculate the

hash of the header of the new block, which must begin with a given

number of zeros to confirm the correctness of the block. This task is

known as proof of work (proof of work), based on two principles: 1) to

make transaction confirmation costly in the form of computer

calculations to users of the network; 2) receive reward for transaction

verification.

The new block is accepted by other network nodes if the header

hash value is equal to or less than a given number, value of this number

periodically varies. When the result is computed, the generated block is

sent to other nodes that check it. If the check is successful, then the

block is added to the chain and the next block must include its hash.

27. Security of IoT Based Blockchain Technology

373

Fig. 27.2 – Structure of a block

The work, that nodes need to perform to create a new block

requires a lot of time and computational resources. This reduces the

probability that two blocks can be produced at the same time, but this

situation is still possible. When this happens, a temporary fork in

blockchain is created. In this case, nodes can build a chain on different

branches. To prevent this situation, each node tracks all branches, but

nodes will try to expand only the longest branch. In this case, the length

is determined not by the number of blocks, but by the total volume of

work spent on the creation of a branch, and is determined by the

number of zeros at the beginning of the block hash.

The computational complexity of transaction verification allows to

avoid dependence on the number of network nodes controlled by

attacker. Thus, only the total computational power of the nodes affects

the verification. Therefore, an attacker requires significant

computational resources to modify information in a block or to create

an incorrect block, which makes it virtually impractical.

Since blockchain copies are stored in distributed network nodes,

blockchain technology is resistant to problems with temporary or

27. Security of IoT Based Blockchain Technology

374

permanent disabling of nodes due to hardware or communications

failure, and also the connection of new nodes. The more nodes are in

the network, the more reliable the storage in blockchain. Blockchain

does not have a single point of failure, unlike a centralized system with

a single server, which ensures high reliability of data storage.

Merkle Tree is a data structure, also known as binary tree of hash

lists. In the case of the Bitcoin, the Merkle tree is constructed as follows

(Fig. 27.3) [4].

We start with three transactions, A, B, C, which form the leaves of

the Merkle tree, as shown in Figure 27.3.

Fig.27.3 – Merkle tree

1. The transactions are not stored in the Merkle tree; rather, their data

is hashed and the resulting hash is stored in each leaf node as HA, HB, HC:

H~A~ = SHA256(SHA256(Transaction A)).

2. Consecutive pairs of leaf nodes are then summarized in a parent

node, by concatenating the two hashes and hashing them together.

That string is then double-hashed to produce the parent node’s hash:

H~AB~ = SHA256(SHA256(H~A~ + H~B~)).

3. Because the Merkle tree is a binary tree, it needs an even number of

leaf nodes. If there is an odd number of transactions to summarize, the last

transaction hash will be duplicated to create an even number of leaf nodes.

In our example transaction C is duplicated.

27. Security of IoT Based Blockchain Technology

375

4. The process continues until there is only one node at the top, the

node known as the Merkle root.

Using the Merkle tree in Blockchain allows to provide "genuineness"

of transactions in a block. If you change at least one transaction, then

Merkle root will also change. Therefore, the following situation is

impossible. For example, miner produced a new block and started sending

it over the network. At this time, the attacker intercepts the block and

removes some transaction from the block, and then sends the already

changed block.

It is enough to calculate the Merkle root and compare it with what is

written in the header block to check block integrity.

27.1.3 Blockchain cryptography

Cryptography is the core of the blockchain, which provides reliable

work of the system. The blockchain architecture suggests that the trust

among the network participants based on the mathematics principles, so, it

is formalized. Cryptography also guarantees security, based on

transparency and the ability to verify all transactions, rather than limitation

of the system visibility (perimeter security) [4].

Blockchain technology uses cryptography as a means of user

protection, ensuring transaction security and protecting all information.

Various cryptographic technologies can guarantee the invariability of

the blockchain transactions log file, resolve authentication tasks, and

control access to the network and data in the blockchain.

Cryptography in blockchain is based on three components: hash

functions, asymmetric encryption and digital signature.

Hashing is the process of converting the input data of any length into

a source string of fixed length. For example, a hash function can get a

string with any number of characters (one letter or a whole story), and

provide a string with a strictly defined number of characters as an output.

A reliable hash function provides collision protection (it is impossible

to get two identical hash values from different input data) and has the so-

called avalanche effect, when the slight change in input data completely

changes the output.

Public key cryptography. Public key cryptography or asymmetric

cryptography allows to share information using a public key that you

can share with anyone.

27. Security of IoT Based Blockchain Technology

376

Instead of using one key, separate key are used for encryption and

decryption (public key and private key) [17].

A combination of user’s public and private keys is used to encrypt

the information, while the recipient’s private key and the sender's

public key decrypt it. It is impossible to determine which private key is

based on the public key. Thus, user can send his public key to anyone,

without worrying that someone will have access to his private key. The

sender can encrypt files, and be confident that they will be decrypted

only by a specified party.

In addition, a digital signature which ensures the data integrity is

created while using public key cryptography. This is achieved by

combining a user's private key with the data that he intends to sign,

using a mathematical algorithm.

Since the actual data is part of the digital signature, the network

does not recognize them as valid, if any part of it is fake. Editing even

the small piece of data changes the shape of the entire signature,

making it wrong or obsolete. Due to this, blockchain technology can

guarantee that any recorded data is true, accurate and unchanged.

Digital signatures provide immutability for the data recorded in

blockchain.

Digital signature. The digital signature provides authentication and

authentication in the same way as conventional signatures, only in

digital form.

Digital signatures are one of the key factors in ensuring the

security and integrity of data recorded in blockchain. They are the

standard parts of the most blockchain protocols, mainly used for

transactions and transaction blocks protection, transfer of confidential

information, software distribution, contract management, and many

other cases where it is important to detect and prevent any external

interference. Digital signatures use asymmetric cryptography-this

means that information can be shared with anyone using a public key.

Digital signatures have three key advantages while using it for

information storage and transfer in blockchain. First of all, they

guarantee the integrity. Theoretically encrypted data that is transmitted

may be imperceptibly changed by a hacker. However, if this happens,

the signature will be also changed and become incorrect. Therefore,

data with a digital signature is not only protected from viewing, but also

allows you to find out whether it was faked.

27. Security of IoT Based Blockchain Technology

377

While using the blockchain technology, user has public and private

keys, both of them are strings of random numbers and letters. The

public key, also called public address, and it can be compared to an

email address. The private key must be written and stored in a secure

place. Ideally, it can be a piece of paper or a hardware wallet, because

it’s almost impossible to hack them.

There is no option "I forgot my private key" in Blockchain. If a

private key is lost, then everything encrypted with that key will be lost.

Digital signatures are unique and they are created using the

following three algorithms [4]:

– an algorithm for generating keys, which provides private and

public keys;

– a signature algorithm that combines data and a private key to

create a signature;

– an algorithm that verifies the signatures and determines whether

a message is genuine or not, based on the message, public key and

signature.

The key features of these algorithms are:

– it is absolutely impossible to work with a private key based on

the public key or data that it has encrypted;

– it ensures the authenticity of the signature on the basis of the

message and the private key which is verified using the public key.

27.2 Consensus algorithms in blockchain technology

Consensus is the decision-making process of group in which all

group members agree to support the decision in the interests of the

whole. The voting is deciding according to the majority of the votes,

without taking into account the interests of the minority, but on the

other hand, it guarantees the achievement of an agreement that benefits

the entire group.

The decision-making method is called the "mechanism of

consensus". The consensus mechanism aims to achieve the following

objectives [21]:

1) agreement seeking - should bring about as much agreement

from the group as possible;

2) collaborative - all the participants should aim to work together

to achieve a result that puts the best interest of the group first;

27. Security of IoT Based Blockchain Technology

378

3) cooperative - all the participants shouldn’t put their own

interests first and work as a team more than individuals;

4) egalitarian - every vote has equal weightage;

5) inclusive - as many people as possible should be involved in the

consensus process;

6) participatory - everyone should participate in the overall

process.

The consensus algorithm for blockchain represents a set of

mathematical rules and functions that allow to reach an agreement

between all participants and provide the network's performance. It

determines the order in which the transaction blocks will be included in

the chain. For instance, blockchain requires a consensus in order to

avoid double spending.

Among the existing consensus algorithms, let's consider two basic

types: Proof of Work and Proof of Stake. Each of them has its own

peculiarities, advantages and disadvantages.

27.2.1 Proof of Work algorithm

Proof-of-Work is one of the first and most widespread algorithms

for achieving consensus and distributing rewards for an generated block

among the network users.

The most commonly used functions used in proof of work systems

include:

Partial hash inversions. The most popular system in Hashcash [4]

uses partial hash inversions to send an e-mail. About 252 hash

calculations is needed for the header of one message, it must be counted

for each new message. At the same time checking of the computed code

correctness is fast because of the use of a one-time SHA-1 computation

with a pre-prepared timestamp.

Functions based on Merkle trees [4]. The most famous example is

the Bitcoin, where multi-level hashing is used as proof of work: each

block containing a hash of the previous block

There is thus no way to change the block without changing hashes

in all subsequent blocks. At the same time, the chain integrity

verification is limited by a one-time computation of the current and

previous block hash. Hash is considered true(verified) only if the hash

value of that block is less than the specific target value that determines

the complexity (difficulty) of Mining. It is necessary brute force search

27. Security of IoT Based Blockchain Technology

379

with the override of arbitrary values of the nonce value to find such

hash [17, 20, 26].

PoW has two characteristic features: to reach a consensus, user

must solve a computationally difficult problem; verification of the

result is done very quickly, unlike the solution.

Proof of Work peculiarities:

– consensus solves the main problem of anonymous networks –

the "Sybil attack". This is a situation when the attacker tries to surround

the victim's node, that is, to gain access to all the nodes next to it.

Having captured the channels of input and output information, he will

be able to pass the false information to the victim. In bitcoin built on

the PoW algorithm, this ability is leveled off, because the victim's node

chooses other nodes randomly, eliminating the complete victim's

environment;

- the proof is not transferred to other blocks, that is, it excludes the

possibility of its stealing (the proof is the computation result which

consumes the energy);

 – proof cannot be obtained in advance. Each new block has a link

to the previous block, so you can compute new proof only with the

appearance of a new block;

– PoW ensures the honest distribution of the reward for a block

according to the power of the computer. If the power (hash rate) is 5%

of the network, then the miner creates a 5% block and receives 5% of

the reward;

– real computational resources are spent on proof obtaining

therefore, the miners lose the incentive to affect the nodes and transmit

false information because there is a risk of losing the invested money.

The main disadvantage of the PoW consensus algorithm is the

high computational cost.

High power consumption. The miners are consuming massive

amounts of electricity, but their calculations are used only for the

network needs, that leads to waste energy. Today there is no idea how

to use of the calculations results for any other purposes.

Environmental aspect. Energy consumptions forces to increase the

generation of electricity by burning a large amount of fuels, including

fossil and non-renewable fuels. It enhances environmental pollution.

Propensity to attack "51%". If the attacker controls 51% of the

network he can control the whole blockchain and perform transactions

27. Security of IoT Based Blockchain Technology

380

at wish. Attacker can interfere with the transactions, canceling them

and doing other manipulations, because its power is higher, and

therefore, it will be accepted "his" chain, and not legal. Today, such

attacks are unlikely due to the extremely high hash rate.

Let us consider the PoW algorithm as an example of Bitcoin

cryptocurrency. Each block in Bitcoin consists of two parts:

• block header of key parameters, including block creation time,

reference to the previous block and the Merkle tree root of the block of

transactions;

• block list of transactions.

To reference a specific block, its header is hashed twice with the

SHA-256 [4] function; the resulting integer value belongs to the

interval [0; 2256 − 1]. To account for different possible

implementations, we will use a generic hashing function hash(·) with a

variable number of arguments and range [0; M]. For example,

arguments of the function can be treated as binary strings and merged

together to form a single argument that can be passed to the SHA-256

hashing function

The block reference is used in the proof of work protocol; in order

for a block to be considered valid, its reference must not exceed a

certain threshold [19]:

ℎ𝑎𝑠ℎ(𝐵) ≤ 𝑀/𝐷, (27.1)

where 𝐷 ∈ [1, 𝑀]– is the target difficulty. There is no known way

to find 𝐵 satisfying (27.1), other than iterating through all possible

variables in the block header repeatedly. The higher the value of 𝐷, the

more iterations are needed to find a valid block; the expected number of

operations is exactly 𝐷.

The time period 𝑇(𝑟), for a miner with hardware capable of

performing r operations per second to find a valid block is distributed

exponentially with the rate 𝑟/𝐷 [19]:

𝑃{𝑇(𝑟) ≤ 𝑡} = 1 − exp (−𝑟𝑡/𝐷).

Consider 𝑛 Bitcoin miners with hash rates 𝑟1, 𝑟2, … , 𝑟𝑛. The period

of time to find a block 𝑇 is equal to the minimum value of random

variables 𝑇(𝑟𝑖) assuming that the miner publishes a found block and it

27. Security of IoT Based Blockchain Technology

381

reaches other miners immediately. According to the properties of the

exponential distribution, 𝑇 is also distributed exponentially [19]:

𝑃{𝑇 ≝ min(𝑇1, … , 𝑇𝑛) ≤ 𝑡} = 1 − exp (−
𝑡

𝐷
∑ 𝑟𝑖

𝑛
𝑖=1);

𝑃{𝑇 = 𝑇𝑖} =
𝑟𝑖

∑ 𝑟𝑗
𝑛
𝑗=1

.

The last equation shows that the mining is fair: a miner with a share of

mining power p has the same probability 𝑝 to solve a block before other

miners.

27.2.2 Proof of Stake algorithm

In proof of stake algorithms, inequality (27.1) is modified to depend

on the user’s ownership of the particular PoS protocol cryptocurrency and

not on block properties. Consider a user with address A and balance

bal (A). A commonly used proof of stake algorithm uses a condition as

[19]:

ℎ𝑎𝑠ℎ(ℎ𝑎𝑠ℎ(𝐵𝑝𝑟𝑒𝑣), 𝐴, 𝑡) ≤ 𝑏𝑎𝑙(𝐴)𝑀/𝐷, (27.2)

where 𝐵𝑝𝑟𝑒𝑣 – denotes the block the user is building on, 𝑡 – is the current

UTC timestamp.

For various reasons, some cryptocurrencies use modified versions of

(27.2) which we discuss in the corresponding sections.

Unlike (27.1), the only variable that the user can change is the

timestamp 𝑡 in the left part of equation (27.2). The address balance is

locked by the protocol; e.g., the protocol may calculate the balance based

on funds that did not move for a day. Alternatively, a PoS cryptocurrency

may use unspent transaction outputs as Bitcoin does; in this case, the

balance is naturally locked. A proof of stake protocol puts restrictions on

possible values of 𝑡. For example, if 𝑡 must not differ from the UTC time

on network nodes by more than an hour, then a user can attempt no more

than 7200 values of 𝑡. Thus, there are no expensive computations involved

in proof of stake.

Together with an address 𝐴 and a timestamp 𝑡 satisfying (27.2), a user

must provide a proof of ownership of the address. To achieve this, the user

can sign the newly minted block with his signature; in order to produce a

27. Security of IoT Based Blockchain Technology

382

valid signature, one must have a private key corresponding to the address

𝐴.

The time to find a block for address 𝐴, is exponentially distributed

with rate 𝑏𝑎𝑙(𝐴)/𝐷. Consequently, the (27.2) implementation of proof of

stake is fair: the probability to generate a valid block is equal to the ratio of

user’s balance of funds to the total amount of currency in circulation. The

time to find a block for the entire network is distributed exponentially with

rate ∑ 𝑏𝑎𝑙(𝑎)/𝐷𝑎 .

Thus, if the monetary supply of the currency ∑ 𝑏𝑎𝑙(𝑎)𝑎) is fixed or

grows at a predictable rate, the difficulty 𝐷 should be known in advance

[19]:

𝐷 =
1

𝑇𝑒𝑥
∑ 𝑏𝑎𝑙(𝑎)𝑎 ,

with 𝑇𝑒𝑥 denoting the expected time between blocks. In practice, 𝐷 needs

to be adjusted based on recent blocks because not all currency owners

participate in block minting.

The most well-known consensus method is proof of work (discussed in

27.2.1) which is used by bitcoin. However, due to its high computational and

bandwidth requirements, it does not seem to be practical for IoT networks.

Therefore, we present other existing consensus methods and discuss the

possibility of applying them to a blockchain based IoT network [17, 21, 26].

1. Delegated Proof of Stake (DPoS). DPoS is a system in which a

fixed number of elected entities (called block producers or witnesses) are

selected to create blocks in a round-robin order. Block producers are voted

into power by the users of the network, who each get a number of votes

proportional to the number of tokens they own on the network (their stake).

Alternatively, voters can choose to delegate their stake to another voter,

who will vote in the block producer election on their behalf.

2. Leased Proof of Stake (LPoS). LPoS is an advanced version of the

Proof of Stake (PoS) algorithm. Traditionally in the Proof of Stake

algorithm, each node holds a certain amount of cryptocurrency and is

eligible to add the next block in to the blockchain. However, with Leased

Proof of Stake, users are able to lease their balance to full nodes. The

higher the amount that is leased, the better the chances are that the full

node will be selected to produce the next block. If the node is selected, the

27. Security of IoT Based Blockchain Technology

383

user will receive a percentage of the transaction fees that are collected by

the node.

3. Proof of Importance (PoI). PoI is a Blockchain consensus algorithm

that considers the overall productivity of users in the network. It was first

used by NEM (New Economy Movement) which is a Blockchain

technology company aiming to process transactions more efficiently and

introduces reputation to the cryptosystem.

4. Practical Byzantine Fault Tolerance (PBFT). PBFT is an algorithm

that optimizes aspects of Byzantine Fault Tolerance (in other words,

protection against Byzantine faults) and has been implemented in several

modern distributed computer systems, including some blockchain

platforms. These blockchains typically use a combination of pBFT and

other consensus mechanisms.

5. Delegated Byzantine Fault Tolerance (dBFT). Delegated Byzantine

Fault Tolerance is a sophisticated algorithm meant to facilitate consensus

on a blockchain. Although it is not in common use as of yet, it represents

an alternative to simpler proof of stake, proof of importance and proof of

work methods.

6. Proof of Capacity (PoC). POC is a consensus mechanism algorithm

used in blockchains that allows the mining devices in the network to use

their available hard drive space to decide the mining rights, instead of

using the mining device’s computing power (as in the proof of work

algorithm) or the miner’s stake in the cryptocoins (as in the proof of stake

algorithm).

7. Proof of Activity (PoA). PoA is one of the many blockchain

consensus algorithms used to ensure that all the transactions occurring on

the blockchain are genuine and all users arrive at a consensus on the

precise status of the public ledger. Proof of activity is a mixed approach

that marries the other two commonly used algorithms – namely, proof of

work (POW) and proof of stake (POS).

8. Proof of Burn (PoB). Proof of burn is one of the several consensus

mechanism algorithms implemented by a blockchain network to ensure

that all participating nodes come to an agreement about the true and valid

state of the blockchain network thereby avoiding any possibility of

cryptocoin double spending. Proof of burn follows the principle of

“burning” or “destroying” the coins held by the miners that grant them

mining rights.

27. Security of IoT Based Blockchain Technology

384

9. Proof of Elapsed Time (PoET). POET is a blockchain network

consensus mechanism algorithm that prevents high resource utilization and

high energy consumption, and keeps the process more efficient by

following a fair lottery system. In recent times, leading microchip

manufacturer, Intel has been working on its proprietary consensus

protocol. The new standard is an integral component of the Hyperledger

Sawtooth blockchain framework and is used to provide enclave in Intel’s

Software Guard Extensions (SGX). Table 27.1 summarizes the comparison

between various consensus algorithms [17].

Table 27.1 – Consensus Protocol Comparison.

PoW PoS PoET
BFT and

Variants

Federated

BFT

Blockchain

type

Permissi-

onless
Both Both

Permissi-

oned

Permissi-

onless

Transaction

finality
Probabilistic Probabilistic

Probabi-

listic
Immediate Immediate

Transaction

rate
Low High Medium High High

Token

needed?
Yes Yes No No No

Cost of

participation
Yes Yes No No No

Scalability

of peer

network

High High High Low High

Trust model Untrusted Untrusted Untrusted Semi-trusted Semi-trusted

27.3 Blockchain technology for the IoT security

27.3.1 Blockchain and the IoT

Blockchain technology would give better solution to the problems

faced by IoT systems. In the growing scenarios of IoT systems, there

are more chances for having increased number of interacting things or

devices in it. This would lead to many hurdles because, in IoT systems,

27. Security of IoT Based Blockchain Technology

385

mostly the collected data is maintained in the central servers. If the

devices want to access the data, they have to interact using the

centralized network and the data flow will happen through the central

server, this process flow is clearly depicted in Fig. 27.3. In such large-

scale IoT systems, the centralized server will not be an effective

approach [14, 20]. Most of the IoT systems, that are implemented as of

now are relaying on centralized server concept. For handling the huge

data processed in large scale IoT systems, there is a need for increasing

the internet infrastructure. One best way to solve this is to have

decentralized or distributed networks where “Peer-to-Peer Networking

(PPN), Distributed File Sharing (DFS), and Autonomous Device

Coordination (ADC)” functions could be capable [14].

Blockchain can carry out these three functions allowing the IoT

systems to track the huge number of connected and networked devices.

Blockchain allows a peer to peer messaging in faster way with the help

of distributed ledger as shown in Fig. 27.4. The data flow process in

IoT with Blockchain technology is different from only IoT system. In

IoT with BC, the data flow is from sensors-network-router-internet-

distributed blockchain-analytics-user. Here, the distributed ledger is

tamper proof which does not allow in misinterpretation, wrong

authentications in data. Blockchain complexly eliminates the Single

Thread Communication (STC) in IoT making the system more trust

less. With the adoption of Blockchain in IoT, the data flow will become

more reliable and secure [14].

A blockchain-based, decentralized IoT can become a truly

revolutionary approach to transaction processing among devices (see

Fig. 27.5).

Fig. 27.3 – Data flow in Internet of Things [14]

27. Security of IoT Based Blockchain Technology

386

Fig. 27.4 – Data flow in Internet of Things with Blockchain

Technology [14]

It is important to note that while Bitcoin contains an escalating

difficulty in the blockchain mining process to restrict the issuance of

currency, no such restriction is necessary in our vision of blockchains

for the IoT. For the ADEPT implementation of a blockchain-based IoT,

we chose the Ethereum protocol in its alpha version.6 Ethereum’s

improvements to the traditional blockchain approach of Bitcoin, the

Turing complete scripting languages it introduced and its ability to

create binding contracts were extremely compelling for our PoC [18].

The project for Autonomous Decentralized Peer-to-Peer Telemetry

(ADEPT) led by IBM and Samsung [18] aims to promote device

autonomy, and to this end they use blockchain technology to ensure

code execution on edge devices. ADEPT uses three protocols:

Telehash, Bittorrent and Ethereum, for messaging, file sharing and

blockchain, respectively. Blockchain technology provides

authentication, engagement, contracts and checklists.

When integrating blockchain, it needs to be decided where these

interactions will take place: inside the IoT, a hybrid design involving

IoT and blockchain, or through blockchain [20].

Fog computing has also revolutionized the IoT with the

inclusion of a new layer between cloud computing and IoT devices

and could also facilitate this integration. Below, these alternatives

27. Security of IoT Based Blockchain Technology

387

(shown in Fig. 27.6) are described together with their advantages

and disadvantages [20]:

Fig. 27.5 – The blockchain functions as a distributed transaction ledger

for various IoT transactions

IoT–IoT: this approach could be the fastest one in terms of latency,

and security since it can work offline. IoT devices have to be able to

communicate with each other, which usually involves discovery and

routing mechanisms.

Only a part of IoT data is stored in blockchain whereas the IoT

interactions take place without using the blockchain (Fig. 27.6 a).

• IoT–Blockchain: in this approach all the interactions go through

blockchain, enabling an immutable record of interactions. This

approach ensures that all the chosen interactions are traceable as their

details can be queried in the blockchain, and moreover it increases the

autonomy of IoT devices. Nevertheless, recording all the interactions in

blockchain would involve an increase in bandwidth and data, which is

one of the well-known challenges in blockchain (Fig. 27.6 b). On the

other hand, all IoT data associated with these transactions should also

be stored in blockchain.

• Hybrid approach: lastly, a hybrid design where only part of the

interactions and data take place in the blockchain and the rest are

directly shared between the IoT devices. One of the challenges in this

approach is choosing which interactions should go through the

blockchain and providing the way to decide this in run time (Fig.

27.6 c).

27. Security of IoT Based Blockchain Technology

388

Fig. 27.6 – Blockchain IoT interactions

27.3.2 Benefits of Integrating Blockchain with IoT

There are many benefits of adopting blockchain with IoT, as

shown in Fig.27.7. These benefits can be summarized as follows [11,

12, 13, 20, 26, 28]:

1. Decentralization. Because of the decentralized architecture of

IoT, blockchain is most suitable as a security solution in IoT. The shift

from a centralized architecture to a P2P distributed one will remove

central points of failures and bottlenecks [24]. The majority of

participants must verify the transactions in order to approve it and add

it to the distributed ledger. There is no single authority that can approve

the transactions or set specific rules to have transactions accepted.

Therefore, there is a massive amount of trust included since the

majority of the participants in the network have to reach an agreement

to validate transactions. Other benefits that come with the

decentralization of the architecture are an improvement of the fault

tolerance and system scalability. It would reduce the IoT silos, and

additionally contribute to improving the IoT scalability and becomes

more robust to DoS attacks.

27. Security of IoT Based Blockchain Technology

389

Fig. 27.7 – Benefits of integrating blockchain with IoT

2. Publicity. All participants have the ability to see the all the

transactions and all blocks as each participant has its own ledger. The

content of the transaction is protected by participant’s private key [3,

12], so even all participants can see them, they are protected. The IoT is

a dynamic system in which all connected devices can share information

together and at the same time protecting users’ privacy.

3. Identity. Using a common blockchain system participants are

able to identify every single device. Data provided and fed into the

system is immutable and uniquely identifies actual data that was

provided by a device. Additionally, blockchain can provide trusted

distributed authentication and authorization of devices for IoT

applications.

4. Resiliency. Each node has its own copy of the ledger that

contains all transactions that have ever made in the network. So, the

blockchain is better able to withstand attack. Even if one node was

compromised, the blockchain would be maintained by every other

node. Having a copy of data at each node in the IoT will improve

information sharing needs. However, it introduces new processing and

storage issues.

5. Reliability. IoT information can remain immutable and

distributed over time in blockchain. Participants of the system are

capable of verifying the authenticity of the data and have the certainty

that they have not been tampered with. Moreover, the technology

27. Security of IoT Based Blockchain Technology

390

enables sensor data traceability and accountability. Reliability is the

key aspect of the blockchain to bring in the IoT.

6. Autonomy. Blockchain technology empowers next-gen

application features, making possible the development of smart

autonomous assets and hardware as a service. With blockchain, devices

are capable of interacting with each other without the involvement of

any servers.

7. Security. Information and communications can be secured if

they are stored as transactions of the blockchain. Each transaction,

before being sent to blockchain network, is signed by the node and

must be verified and validated by miners. After the validation, it’s

practically impossible to forge or modify transactions already saved in

the blockchain. This provides a proof of traceable events in the system.

Blockchain has the ability to provide a secure network over untrusted

parties which is needed in IoT with numerous and heterogeneous

devices [12]. In other words, all IoT network nodes must be malicious

to perform an attack.

8. Speed: A blockchain transaction is distributed across the

network in minutes and will be processed at any time throughout the

day.

9. Cost saving. Existing IoT solutions are expensive because of

the high infrastructure and maintenance cost associated with centralized

architecture, large server farms, and networking equipment. The total

amount of communications that will have to be handled when there are

tens of billions of IoT devices will increase those costs substantially

[11].

10. Anonymity: The nodes in blockchain are identified by their

public keys (or the hash of public keys). These pseudonyms don’t link

any information about the identity of the participating nodes. This

feature has been criticised as it increases the use of cryptocurrencies in

the illegal online market. However, it could be seen as an advantage if

used for other purposes, for example, electoral voting systems.

27.3.3 Main challenges of blockchain in IoT

Despite the blockchain’s benefits mentioned above, it is still some

challenges to be solved in order to adapt the blockchain technology in

IoT. We enumerate the following challenges (Fig.27.8) [11, 12, 13, 20]:

27. Security of IoT Based Blockchain Technology

391

Fig. 27.8 – Main challenges of blockchain in IoT

1. Computation and storage issues. As most of IoT devices have

limited capabilities in terms of computation and storage resources, the

blockchain needs to be customized before its application as security

solution in IoT. To address the problem of adaptability, one solution

may consist to add a new application level that hides the details of

blockchain implementation, namely the PoW. This solution allows the

resource-constrained IoT devices to involve in the system without

computing the PoW.

2. Processing Power and Time. The processing power and time

needed to achieve encryption for all the objects included in a

blockchain system. IoT systems have different types of devices which

have very different computing capabilities, and not all of them will be

able to run the same encryption algorithms at the required speed.

3. Storage. One of the main benefits of blockchain is that it

eliminates the need for a central server to store transactions and device

IDs, but the ledger has to be stored on the nodes themselves. The

distributed ledger will increase in size as time passes and with

increasing number of nodes in the network. As said earlier, IoT devices

have low computational resources and very low storage capacity.

4. Time latency. In bitcoin blockchain, the validation of

transactions takes about 10 minutes, which creates a problem for real

time applications.

5. Scalability. Scalability issues in the blockchain might lead to

centralization, which is casting a shadow over the future of the

27. Security of IoT Based Blockchain Technology

392

cryptocurrency. The blockchain scales poorly as the number of nodes in

the network increases. This issue is serious as IoT networks are

expected to contain a large number of nodes.

6. Bandwidth consumption. As IoT devices generate a lot of

transactions, this includes an important problem if it is necessary to

validate each of those transactions that consume a lot of bandwidth.

7. The anonymity. Actually, blockchain doesn’t ensure a fully

anonymous transactions. Indeed, the peers are identified by

pseudonyms that can be tracked but they are still unlikable

(impossibility of extracting identity of the person from its pseudonym).

8. Naming and Discovery. The blockchain technology has not

been designed for the IoT, meaning that nodes were not meant to find

each other in the network. An example is the Bitcoin application in

which the IP addresses of some “senders” are embedded within the

Bitcoin client and used by nodes to build the network topology. This

approach will not work for the IoT as IoT devices will keep moving all

the time which will change the topology continuously.

9. Legal and Compliance. The blockchain is a new technology

that will have the ability to connect different people from different

countries without having any legal or compliance code to follow, which

is a serious issue for both manufacturers and service providers. This

challenge will be the major barrier for adopting blockchain in many

businesses and applications.

10. Lack of skills. The blockchain technology is still new.

Therefore, a few people have large knowledge and skills about the

blockchain, especially in banking. In other applications, there is a

widespread lack of understanding of how the blockchain works [2]. The

IoT devices exist everywhere, so adopting the blockchain with IoT will

be very difficult without public awareness about the blockchain.

27.3.4 Blockchain-based the IoT security solutions

Let us consider and summarize some of the intrinsic features of

blockchain that can be immensely useful for IoT in general, and IoT

security in particular [12].

1. Address Space. Blockchain has a 160-bit address space, as

opposed to IPv6 address space which has 128-bit address space [4]. A

blockchain address is 20 bytes or a 160-bit hash of the public key

generated by ECDSA (Elliptic Curve Digital Signature Algorithm).

27. Security of IoT Based Blockchain Technology

393

With 160-bit address, blockchain can generate and allocate addresses

offline for around 1.46 *1048 IoT devices.

The probability of address collision is approximately 1048, which is

considered sufficiently secure to provide a GUID (Global Unique

Identifier) which requires no registration or uniqueness verification

when assigning and allocating an address to an IoT device.

With blockchain, a centralized authority and governance, as that of

the Internet Assigned Numbers Authority (IANA), is eliminated.

Currently, IANA oversees the allocation of global IPv4 and IPv6

addresses. Furthermore, blockchain provides 4.3 billion addresses more

than IPv6, therefore making blockchain a more scalable solution for

IoT than IPv6.

Lastly, it is worth noting that many IoT devices are constrained in

memory and computation capacity, and therefore will be unfit to run an

IPv6 stack.

2. Identity of Things (IDoT) and Governance. Identity and Access

Management (IAM) for IoT must address a number of challenging

issues in an efficiently, secure, and trustworthy manner. One primary

challenge deals with ownership and identity relationships of IoT

devices. Ownership of a device changes during the lifetime of the

device from the manufacturer, supplier, retailer, and consumer.

The consumer ownership of an IoT device can be changed or

revoked, if the device gets resold, decommissioned, or compromised.

Managing of attributes and relationships of an IoT device is another

challenge. Attributes of a device can include manufacturer, make, type,

serial number, deployment GPS coordinates, location, etc. Apart from

attributes, capabilities, and features, IoT devices have relationships. IoT

relationships may include device-to-human, device-to-device, or

device-to-service. An IoT device relationships can be deployed by, used

by, shipped by, sold by, upgraded by, repaired by, sold by, etc.

The approaches like TrustChain are proposed to enable trusted

transactions using blockchain while maintaining the integrity of the

transactions in a distributed environment.

3. Data Authentication and Integrity. By design, data

transmitted by IoT devices connected to the blockchain network will

always be cryptographically proofed and signed by the true sender that

holds a unique public key and GUID, and thereby ensuring

authentication and integrity of transmitted data. In addition, all

27. Security of IoT Based Blockchain Technology

394

transactions made to or by an IoT device are recorded on the

blockchain distributed ledger and can be tracked securely.

4. Authentication, Authorization, and Privacy. Blockchain smart

contracts have the ability to provide a de-centralized authentication

rules and logic to be able to provide single and multiparty

authentication to an IoT Device. The smart contracts can spell out also

who has the right to update, upgrade, patch the IoT software or

hardware, reset the IoT device, provision of new keypairs, initiate a

service or repair request, change ownership, and provision or re-

provision of the device.

5. Secure Communications. IoT application communication

protocols as those of HTTP, MQTT, CoAP, or XMPP, or even

protocols related to routing as those of RPL and 6LoWPAN, are not

secure by design [12].

With blockchain, key management and distribution are totally

eliminated, as each IoT device would have his own unique GUID and

asymmetric key pair once installed and connected to the blockchain

network. This will lead also to significant simplification of other

security protocols as that of DTLS, with no need to handle and

exchange PKI certificates at the handshake phase in case of DTLS or

TLS (or IKE in case of IPSec) to negotiate the cipher suite parameters

for encryption and hashing and to establish the master and session keys.

Therefore, light-weight security protocols that would fit and stratify the

requirements for the compute and memory resources of IoT devices

become more feasible.

27.4 Work related analysis

The integration of blockchain with IoT have investigated in the

next papers.

Bin Yu et al. 2018 in [25] demonstrate the applicability of

blockchain to IoT devices and data management with an aim of

providing end-to-end trust for trading. The authors first demonstrate

that Blockchain, which is designed to remove the trusted third-party in

a decentralized system, is an ideal solution to resolve the trust issue in

IoT ecosystems. They then describe how with the help of blockchain,

different parties can trust and verify the data and also the ownership of

IoT devices and their related data can be traced.

27. Security of IoT Based Blockchain Technology

395

This paper of Nazri Abdullah et al. 2017 [1] presents drawbacks of

Kerberos implementations and identifies authentication requirements

that can enhance the security of Big Data in distributed environments.

The enhancement proposed by authors is based on the rising technology

of blockchain that overcomes shortcomings of Kerberos such as

numerous security issues, replay attacks, DDoS and single point of

failure are some examples.

Angelo Capossele et al. 2018 in [6] present a sustainable model for

fostering the creation of s-health applications, identify and discuss the

existing challenges, and explore the role of blockchain in overcoming

some of them. The authors explain how mobile s-health applications

can improve prediction, prevention, and prescriptive care, while

generating feedback that make cities smarter when accounting for and

adapting to individual needs and as a result, the constantly ongoing

societal challenge of improving individual life will receive additional

support.

The article of Blesson Varghese et al. 2018 [23] describes how

distributed-ledger technologies (such as blockchains) provide a

promising approach to support the operation of a marketplace and

regulate its behavior (such as the GDPR in Europe) and operation. The

authors describe two scenarios – smart cities and healthcare, that

provide context for the discussion of how such a marketplace would

function and be utilized in practice. Given this context, they described a

marketplace for services that can exist at the network edge.

In [8] Ferrer E. C. considers how the combination of blockchain

technology and swarm robotic systems can provide innovative solutions

to emergent issues, by using the robots as nodes in a network. Proposed

by author new security models and methods can be implemented in

order to give data confidentiality and entity validation to robot swarms,

therefore making them suitable for trust-sensitive applications.

Distributed decision making and collaborative missions can be easily

designed, implemented, and carried out by using special transactions in

the ledger, which enable robotic agents to vote and reach agreements.

In [20] it is provided an extensive description of the main

challenges that blockchain and IoT must address in order for them to

successfully work together, in particular, key points where blockchain

technology can help improve IoT applications. The authors present

27. Security of IoT Based Blockchain Technology

396

possible ways of integration and platforms that are integrating IoT and

blockchain in a general context.

Hany F. et al. 2018 in [11] provide an overview of the integration

of the blockchain with the IoT with highlighting the integration benefits

and challenges.

The authors conclude that the combination of blockchain and IoT

can provide a powerful approach which can significantly pave the way

for new business models and distributed applications.

Panarello A. et al. 2018 in [17] present a comprehensive survey on

blockchain and IoT integration. In this paper analyzed the current

research trends on the usage of blockchain-related approaches and

technologies in an IoT context and point out the main open issues and

future research directions.

Lee B., & Lee J. H. 2017 in [15] consider a secure firmware

update issue, which is a fundamental security challenge for the

embedded devices in an IoT environment and propose a new firmware

update scheme that utilizes a blockchain technology to securely check a

firmware version, validate the correctness of firmware, and download

the latest firmware for the embedded devices.

In [5] is presented a decentralized, peer-to-peer platform called

BPIIoT for Industrial Internet of Things based on the Block chain

technology which enables peers in a decentralized, trustless, peer-to-

peer network to interact with each other without the need for a trusted

intermediary.

Liu B. et al. 2017 in [16] propose a blockchain-based framework

for Data Integrity Service, the relevant protocols and a prototype

system, conduct the performance evaluation of the implemented

prototype system and discuss the test results.

Christidis K., & Devetsikiotis M. 2016 in [7] consider smart

contracts-scripts that reside on the blockchain that allow for the

automation of multi-step processes. It is shown that the blockchain-IoT

combination is powerful and can cause significant transformations

across several industries, paving the way for new business models and

novel, distributed applications.

Gantait A. et al. 2017 in [10] discuss the use of blockchain in IoT

solutions and explore how different industries are leveraging these two

technologies to build end-to-end automated and secured solutions. In

27. Security of IoT Based Blockchain Technology

397

[9] it is shown the use the IBM Watson IoT platform and IBM

Blockchain service to build a sample use case.

There are some universities in the USA and EU (including ALIOT

project partners) which conduct research and implement MSc and PhD

educational modules related to Blockchain and connection of this

methodology with IoT protection. In particular, the following courses

and programs have been considered:

- IBM Blockchain Course - Blockchain for Developers [29];

- Linux FoundationX: Blockchain: Understanding Its Uses and

Implications [30];

- University of California at Berkeley. Blockchain Technology [31];

- University of Oxford: Oxford Blockchain Strategy Programme [32];

- Princeton university. Bitcoin and Cryptocurrency Technologies [34];

- University System of Georgia. Cybersecurity and the Internet of

Things [35].

- KTH University, Sweden: Master's programme in ICT Cloud

and network infrastructures (CLNI). It includes topics related to

blockchain in the cloud and network infrastructure [36].

Course is a new stage in digital evolution and focuses on the study

and blockchain technology usage in various areas including the Internet

of Things.

Conclusions and questions

The formation of a knowledge system of safety and security of

Internet of Things systems is becoming an important part of the process

of training specialists in the field of computer science.

The basics of blockchain technology and examples of

implementation in the Internet of things are discussed and the

consensus algorithms used in the blockchain technology are considered

in this section.

The principles of ensuring the Internet of things safety and security

using the blockchain technology are discussed.

The advantages and the existing problems of the blockchain

technology integration in the Internet of things are highlighted.

IoT applications have to deal with security problems at different

levels, but with an additional complexity due to the lack of performance

and high heterogeneity of devices.

27. Security of IoT Based Blockchain Technology

398

The increasing number of attacks on IoT networks, and their

serious effects, make it even more necessary to create an IoT with more

sophisticated security.

Blockchain can enrich the IoT by providing a trusted sharing

service, where information is reliable and can be traceable. Data

sources can be identified at any time and data remains immutable over

time, increasing its security. In the cases where the IoT information

should be securely shared between many participants this integration

would represent a key revolution.

However, one of the main challenges in the integration of the IoT

with blockchain is the reliability of the data generated by the IoT.

Blockchain can ensure that data in the chain are immutable and can

identify their transformations, nevertheless when data arrives already

corrupted in the blockchain they stay corrupt. Corrupt IoT data can

arise from many situations apart from malicious ones.

For effective usage of Blockchain technology in the IoT should be

developed the Blockchain architecture that takes into account the

above-mentioned IoT constraints and provides decentralized security

and confidentiality of data. In this section, the materials for module

PCM 3.4 of PC 3 course “Dependability and Security of IoT” are

presented. They can be used for preparation to lectures and self-

learning.

In order to better understand and assimilate the educational

material that is presented in this section, we invite you to answer the

following questions.

1. What is Blockchain?

2. Describe the block structure in Blockchain.

3. What is a genesis block?

4. What is a Merkle tree?

5. What is a hash function?

6. Explain the notion of collision for hash functions.

7. Explain the avalanche effect of hash function.

8. What is a consensus algorithm?

9. Explain the principle of Proof of Work algorithm.

10. Explain the principle of Poof of Stake algorithm.

11. Explain the principle of the 51% attack.

12. Explain the principle of the Sybil attack.

27. Security of IoT Based Blockchain Technology

399

13. What is the process of mining?

14. What are the disadvantages of Proof of Work algorithm.

15. What are the alternative consensus algorithms.

16. How does the Blockchain technology ensure the reliability of

IoT data?

17. How does the Blockchain Technology secure IoT?

18. How does the Blockchain Technology provides anonymity in

IoT?

19. Describe the benefits of the integration of Blockchain with

IoT.

20. Describe the existing challenges of integrating Blockchain

with IoT.

References

1. N. Abdullah, A. Hakansson, E. Moradian. “Blockchain based

approach to enhance big data authentication in distributed

environment,” in Proc. 9th International Conf. Ubiquitous and Future

Networks (ICUFN), IEEE, 2017, P. 887-892.

2. A. Banafa. Internet: https://iot.ieee.org/newsletter/january-

2017/iot-andblockchain-convergence-benefits-and-challenges.html,

Febr. 12, 2019..

3. T. Ahram, A.Sargolzaei, S.Sargolzaei, J.Daniels, B. Amaba.

“Blockchain technology innovations,” in Proc. Technology &

Engineering Management (TEMSCON), 2017 IEEE Conference on,

2017, P. 137–141.

4. A.M. Antonopoulos. Mastering Bitcoin: Unlocking Digital

Crypto-Currencies. California, Sebastopol: O’Reilly Media, Inc., 2014.

5. A. Bahga, V. K. Madisetti. “Blockchain platform for industrial

internet of things”. Journal of Software Engineering and Applications,

vol.9(10), P. 533-546, 2016.

6. A. Capossele, A.Gaglione, M.Nati, M.Conti, R.Lazzeretti, P.

Missier. “Leveraging blockchain to enable smart-health applications,”

in Proc.2018 IEEE 4th International Forum on Research and

Technology for Society and Industry (RTSI), 2018, P. 1-6.

7. K. Christidis, M. Devetsikiotis. “Blockchains and smart

contracts for the internet of things,” IEEE Access, 4, 2016, P.2292-

2303.

https://iot.ieee.org/newsletter/january-2017/iot-andblockchain-convergence-benefits-and-challenges.html
https://iot.ieee.org/newsletter/january-2017/iot-andblockchain-convergence-benefits-and-challenges.html

27. Security of IoT Based Blockchain Technology

400

8. E.C.Ferrer. “The blockchain: a new framework for robotic

swarm systems,” in Proc. of the Future Technologies Conference.

Springer, Cham, 2018, P. 1037-1058.

9. A. Gantait, J.Patra, A. Mukherjee. “Implementing blockchain

for cognitive IoT applications,” Part 2: Use vehicle sensor data to

execute smart transactions in Blockchain. IBM DeveloperWorks, 9,

2017.

10. A. Gantait, J.Patra, A.Mukherjee. “Implementing blockchain

for cognitive IoT applications,” Part 1: Integrate device data with smart

contracts in IBM Blockchain. IBM DeveloperWorks, 9, 2017.

11. H. F. Atlam, A.Alenezi, M. O.Alassafi, G. Wills. “Blockchain

with Internet of Things: Benefits, Challenges, and Future Directions”.

International Journal of Intelligent Systems and Applications (IJISA),

vol.10 (6), P.40-48, 2018.

12. M. A. Khan, K. Salah. “IoT security: Review, blockchain

solutions, and open challenges”. Future Generation Computer Systems,

no.82, P.395-411, 2018.

13. D. E. Kouicem, A.Bouabdallah, H. Lakhlef. “Internet of things

security: A top-down survey”. Computer Networks. Elsevier, In press,

141, P.199-221, 2018.

14. N. M. Kumara, P.K.Mallickb. “Blockchain technology for

security issues and challenges in IoT”. Procedia Computer Science,

132, P. 1815-1823, 2018.

15. B. Lee, J. H. Lee. “Blockchain-based secure firmware update

for embedded devices in an Internet of Things environment”. The

Journal of Supercomputing, vol.73(3), P. 1152-1167, 2017.

16. B. Liu, X. L.Yu, S.Chen, X.Xu, L. Zhu. “Blockchain based

data integrity service framework for IoT data,” in Proc.Web Services

(ICWS), 2017 IEEE International Conference on, 2017, P. 468-475.

17. A. Panarello, N.Tapas, G.Merlino, F.Longo, A.Puliafito

“Blockchain and IoT integration: A systematic survey”. Sensors,

vol.18(8), 2575, P.1-37, 2018.

18. B. S. Panikkar, S.Nair, P.Brody, V. Pureswaran. “ADEPT: An

IoT Practitioner Perspective,” Internet:

http://pdf.yt/d/esMcC00dKmdo53-_, 2015 Nov. 20, 2018..

19. “Proof of Stake versus Proof of Work”. White Paper, Internet:

https://bitfury.com/content/downloads/pos-vs-pow-1.0.2.pdf Jan. 22,

2019..

http://pdf.yt/d/esMcC00dKmdo53-_

27. Security of IoT Based Blockchain Technology

401

20. A. Reyna, C.Martín, J.Chen, E.Soler, M. Díaz. “On blockchain

and its integration with IoT. Challenges and opportunities”. Future

Generation Computer Systems, vol. 88, P. 173–190, 2018.

21. M. Salimitari, M. Chatterjee. “An Overview of Blockchain and

Consensus Protocols for IoT Networks”. arXiv preprint

arXiv:1809.05613, 2018.

22. Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash

System”. Internet: https://bitcoin.org/bitcoin.pdf Dec. 12, 2018.

23. B. Varghese, M.Villari, O.Rana, P.James, T.Shah, M.Fazio,

R.Ranjan. “Realizing Edge Marketplaces: Challenges and

Opportunities”. IEEE Cloud Computing, vol.5(6), P. 9-20, 2018.

24. P. Veena, S.Panikkar, S.Nair, P. Brody. “Empowering the

Edge - Practical Insights on a Decentralized Internet of Things”. IBM

Institute for Business Online. Value, 17, Apr. 2015. Available:

http://www-01.ibm.com/common/ssi/cgi-

bin/ssialias?infotype=PM&subtype=XB&htmlfid=GBE03662USEN#lo

aded Dec. 6, 2018..

25. B. Yu, J.Wright, S.Nepal, L.Zhu, J.Liu, R.Ranjan. “IoTChain:

Establishing trust in the internet of things ecosystem using blockchain”.

IEEE Cloud Computing, vol.5(4), P.12-23, 2018.

26. Z. Zheng, S.Xie, H. N.Dai, H.Wang. “Blockchain challenges

and opportunities: A survey”. Int. J. Web and Grid Services, vol. 14 (4),

P.352-375, 2018.

27. N.G.Yatskiv, S.V.Yatskiv “Perspectives of the Usage of

Blockchain Technology in the Internet of Things”. The Scientific

Bulletin of UNFU, vol. 26, n.8, P. 381-387, 2016. (In Ukrainian)

28. V.Yatskiv, N.Yatskiv, O. Bandrivskyi. “Proof of Video

Integrity Based on Blockchain”, in Proc. Advanced Computer

Information Technologies (ACIT), 2019 IEEE 9th International

Conference on, 2019, P. 431-434.

29. IBM Blockchain Course- Blockchain for Developers.

https://developer.ibm.com/courses/all-courses/blockchain-for-

developers/ July 29, 2019..

30. Linux FoundationX: Blockchain: Understanding Its Uses and

Implications.

https://www.awin1.com/cread.php?awinmid=6798&awinaffid=427859

&clickref=ddblockchainlinux&p=https%3A%2F%2Fwww.edx.org%2F

https://developer.ibm.com/courses/all-courses/blockchain-for-developers/
https://developer.ibm.com/courses/all-courses/blockchain-for-developers/
https://www.awin1.com/cread.php?awinmid=6798&awinaffid=427859&clickref=ddblockchainlinux&p=https%3A%2F%2Fwww.edx.org%2Fprofessional-certificate%2Flinuxfoundationx-blockchain-for-business
https://www.awin1.com/cread.php?awinmid=6798&awinaffid=427859&clickref=ddblockchainlinux&p=https%3A%2F%2Fwww.edx.org%2Fprofessional-certificate%2Flinuxfoundationx-blockchain-for-business

27. Security of IoT Based Blockchain Technology

402

professional-certificate%2Flinuxfoundationx-blockchain-for-business

July 29, 2019..

31. University of California at Berkeley. Blockchain Technology.

https://www.edx.org/course/blockchain-advancing-decentralized-

technology July 29, 2019..

32. University of Oxford: Oxford Blockchain Strategy Programme.

https://www.sbs.ox.ac.uk/programmes/oxford-blockchain-strategy-

programme July 29, 2019..

34. Princeton university. Bitcoin and Cryptocurrency

Technologies. https://www.coursera.org/learn/cryptocurrency July 30,

2019..

35. University System of Georgia. Cybersecurity and the Internet

of Things. https://www.coursera.org/learn/iot-cyber-security July 30,

2019..

36. KTH University, Sweden: Master's programme in ICT Cloud

and network infrastructures (CLNI)

https://www.kth.se/en/studies/master/ict-innovation/introduction-

1.609472 July 30, 2019..

https://www.awin1.com/cread.php?awinmid=6798&awinaffid=427859&clickref=ddblockchainlinux&p=https%3A%2F%2Fwww.edx.org%2Fprofessional-certificate%2Flinuxfoundationx-blockchain-for-business
https://www.edx.org/course/blockchain-advancing-decentralized-technology
https://www.edx.org/course/blockchain-advancing-decentralized-technology
https://www.sbs.ox.ac.uk/programmes/oxford-blockchain-strategy-programme
https://www.sbs.ox.ac.uk/programmes/oxford-blockchain-strategy-programme
https://www.coursera.org/learn/cryptocurrency
https://www.coursera.org/learn/iot-cyber-security
https://www.kth.se/en/studies/master/ict-innovation/introduction-1.609472
https://www.kth.se/en/studies/master/ict-innovation/introduction-1.609472

28. Basic concepts and approaches to development and implementation of IoT systems

403

PART VIII. DEVELOPMENT AND IMPLEMENTATION OF

IOT-BASED SYSTEMS

28. BASIC CONCEPTS AND APPROACHES TO

DEVELOPMENT AND IMPLEMENTATION OF IOT SYSTEMS

Prof., DrS. I. S. Skarga-Bandurova,

Ph.D. Student A. Y. Velykzhanin (EUNU)

Сontents

Abbreviations .. 404

28.1 IoT-based system development process 405

28.1.1. Phases and deliverables of an IoT technical strategy 405

28.1.2 The IoT development strategies ... 408

28.2 Strategies to planning IoT architectures 413

28.3 The base components of the IoT systems 419

28.3.1 Major types of technological offerings from IoT 419

28.3.2 IoT device classification ... 421

28.3.3 IoT device design flow ... 423

28.3.4 Relationship between Sensor Networks and IoT 424

28.4 The IoT development boards and platforms for prototyping 426

28.5 The IoT platforms: types and selection criteria 429

28.6 Work related analysis .. 431

Conclusions and questions... 432

References ... 433

28. Basic concepts and approaches to development and implementation of IoT systems

404

Abbreviations

C2C – Cloud-to-Cloud

CPU – Central Process Unit

D2D – Device-to-Device

D2S – Device-to-Server

FPGA – Field-Programmable Gate Array

GPU – Graphics Processing Unit

I/O – Input/Output

IIoT – Industrial Internet of Things

IoT – Internet of Things

IT – Information Technology

M2C – Machine-to-Cloud

M2M – Machine-to-Machine

MEMS – Micro Electromechanical System

OT – Operational Technology

PCB – Printed Circuit Board

RFID – Radio Frequency Identifier

S2S – Device-to-Server

SN – Sensor Network

TCP – Transmission Control Protocol

ThingML – Internet of Things Modelling Language

UDP – User Datagram Protocol

28. Basic concepts and approaches to development and implementation of IoT systems

405

28.1 IoT-based system development process

Internet of Things (IoT) industry has following three key

characteristics [1]:

 being a driver for customer-facing innovation it is developed by

an associations and government more then by market;

 it has complicated and diverse industrial chain without a unique

subject of responsibility;

 it requires the coordination of the development processes as

well as interacting with humans to learn from his intelligence and

provide more accurate analytics;

 it is in need of new standards, highly professional developers,

highly exclusive products.

In these conditions, it is essential to perform careful thinking about

how to promote IoT solution and how to hold it out. Moreover, further

development of IoT is close related to the public welfare, ability and

willingness of people to use it. This means that rapid challenge the

traditional development process, ways to collect fees form customers

IoT as well as wide application of new strategies for operation and

integration platforms.

28.1.1. Phases and deliverables of an IoT technical strategy

In many areas, product developments processes take a lot of time

to fully mature. The rapid growth of the IoT and Industrial Internet of

Things (IIoT) raises another incarnation of the product development

process. The IoT market is the highly integrated and flexible system

with the open and scalable architectures for integration of relatively

cheap sensors, processors, new connectivity protocols, and power

supply sources. In this context, development processes should take into

account a vide variety of custom solutions, different types of hardware

and software platforms, possible adoption of hardware development

environments, and provide the best solution to robust IoT design.

The process of development and implementation of IoT-based

systems is a sequence of related activities, starting with the project

definition phase where objectives and information needs are considered

and ending with the dissemination of the information product for use by

28. Basic concepts and approaches to development and implementation of IoT systems

406

communities, scientists and decision-makers. The structure of IoT

technical program includes the following elements (Fig. 28.1):

 objective settings;

 preliminary surveys and resource estimation;

 IoT solution strategy;

 choosing IoT reference architecture;

 solution design;

 monitoring design;

 system implementation;

 quality-assurance procedures;

 data management and product development.

The component connection framework indicates of the phases and

deliverables of an IoT technical strategy under each of the elements are

described. These components and their connection links need to be

adequately considered during the planning process of an IoT system.

The planning process conveniently can be classified into the following

three main subsequent phases.

The first phase “Project definition” includes defining the needs and

establishing the objectives of IoT (such as in support of monitoring or

research and policy) and what issues are to be addressed. With the

objectives defined, it can then be decided what data are needed and how

they will be used. Then IoT solution strategy, IoT reference architecture

and technology platforms, are defined. IoT reference architecture

provides a set of architectural patterns, standards, and best practices for

use in developing IoT solutions [2]. Detailed technical reference

architecture can be created only after obtaining a clear understanding of

the IoT solution ecosystem.

The second phase “Project development” comprises the

developing phase, which should consider and include:

 the solution design with data specification, defining device

capabilities, prototyping, platform finalization and performing risk

analysis;

 the planning of a monitoring network with the choice of

location for the sampling operations, supported by preliminary

investigations (inventories and surveys) needed before the program is

started, so that issues, problems and risk factors can be clearly

identified and evaluated;

28. Basic concepts and approaches to development and implementation of IoT systems

407

Project implementation

Project definition phase

Project development

Objective settings
Business objectives
Team
Success criteria
Data sources
Users, partners and stakeholders

Institutional setting
Legislation and policies
Administrative settings

Communication between
stakeholders

IoT reference architectures
Strategy to manage device vendors and
IoT platform vendors
Operational management

Preliminary survey
Snapshot surveys
Data variability, data volume
Types of parameters
Technical feasibility

Resource estimation
Field stations and wells
Laboratory facilities
Transport
staffing

Monitoring Design

Network
Station number
Station location
Sampling frequency

Variables
Priorities
Users
Data sources

Data gathering methods
In situ measurements
Physical, chemical, biological
laboratory analysis

Data management
Data handling
Real-time data and near real-time analysis

Recommended actions
Management policies
Reliable and prediction operations
Scale-up

Monitoring
Measuring
Reporting
Dissemination

Solution design

Data specification
Device capability
Finalize platform
Security solution
Prototyping
Refine architecture
Risk analysis

IoT Solution Strategy
Objectives
Owners
Information needs
Deliverables
Governance model

Solution implementation
Deploy devices, network, software
Deploy apps and analytics
Integrate solution
Test solution Quality assurance

Fieldwork
Laboratories
Quality control

Fig. 28.1 – Phases and deliverables of an IoT technical strategy

28. Basic concepts and approaches to development and implementation of IoT systems

408

 the selection of physical, chemical or biological variables, i.e.

which variables to monitor for different uses and in relation to different

data sources;

 the definition of sampling procedures and operations, such as in

situ measurements with different devices, manual or automated

measurements, for sampling appropriate media, sample pre-treatment

and conservation, identification and shipment;

 the planning of field measurements (frequency) – in appropriate

cases;

 the definition of the resources required for the realization of an

IoT program, e.g. the available national facilities, the inventory of field

stations, equipment and instruments, vehicles and other transportation

means, office and field staff involved in complex IoT activities, human

resources development and training required, internal and external

communication needs and, finally, the estimated costs of the program.

The third phase “Project implementation” comprises the actual

operations (implementation) of the program, with:

 the setting up of a quality-assurance system at the

strategic/organizational, tactical and operational levels, essential for

ensuring the reliability of information obtained by monitoring, covering

field and laboratory analysis, data management, data handling, real-

time and near real-time analysis, and the application of IoT standards

and indices;

 the policies management, implementation reliable and

prediction operations and development of products, leading to the

reporting and dissemination of results and findings.

28.1.2 The IoT development strategies

It is assumed that implementation of IoT system intends the use of

different languages, namely, Python, Java, SQL queries, etc., hardware

and software components, execution on external devices as well as

active interaction with third-party APIs.

There are two main strategies when developing IoT systems,

namely, mashup-driven and model-driven [3]. Mashup-driven strategy

assumes that IoT system is developed by combination or mashing up

existing services and typically based on familiar web development tools

and approaches (e.g. prototyping). Thus, this strategy is often

28. Basic concepts and approaches to development and implementation of IoT systems

409

applicable for designing personalized, customized, short-lived and non

business-critical applications [4].

Model-driven methodology assumes that IoT system is described

on a higher level of abstraction permitting an expressive systems

modeling possibly with code generation [3].

Model-driven methodology for the development of IoT-based

systems.

The model-driven approach for the design and development of

IoT-based systems was proposed in [3, 5], there are some e.g. Internet

of Things Modelling Language (ThingML) [6] that provides a

customizable code generation framework which can be customized to

specific languages, middleware, operating systems, libraries and

systems [7]. In [5], Mezghani et al. identified two main phases of

model-based methodology: (1) Requirements Identification and (2)

Requirements Formalization (Fig. 28.2).

Fig. 28.2 – A model-driven methodology for the design

of IoT-based system [5]

28. Basic concepts and approaches to development and implementation of IoT systems

410

The first phase “Requirements identification” is grounded on

consultations and discussions with the domain experts to gathering

information about the system functionality and identification of the

non-functional requirements. This process is an iterative, where the

functional requirements can be represented using the UML diagrams

that describe the functions of the IoT system.

The second phase “Requirement formalization” is targeted on

structuring requirements and development of models for describing the

relationship of system processes.

Within this phase, it is possible to detach the sub-levels with

specific challenges related to the design of IoT systems such as the

coordination, integration, big data management, etc.

A main advantage of model-driven approach is the platform

independent modeling, which enables code generation for specific IoT

platforms.

Mashup-based methodology for the development of IoT systems.

Mashup tools make it possible to perform very quick prototyping

and leverage converting, transforming, and combining the data from

one or multiple services to meet the project goals. They also enable

connecting different services to create new processes. In addition, some

mashup tools e.g. Clickscript [8], WotKit [9], Paraimpu [10] can

provide simulation means and support interoperability between

different platforms. They could be quite efficient in describing system

architecture, message flow (like activity diagrams), and deployment.

The main phases of mashup-based methodology may include:

Phase 1: Exploring the development landscape to identify the most

suitable tools currently available to satisfy IoT project goals.

When choosing the tool it is crucial to take in consideration

following requirements. The good solution should:

 use the most widely used platforms;

 be open-source and relies on open standards;

 be deployed locally;

 support several programming languages.

Phase 2: Choosing platform for integration between services and

remote platforms.

For example, this phase can be performed using Jupyter Notebook

an open-source computational notebook that enables to combine code,

28. Basic concepts and approaches to development and implementation of IoT systems

411

text and visualization in a single document whose underlying structure

is JSON [11].

Phase 3: For the development of an emerging industry, it is very

important to have standards. The development of IIoT also needs much

more standardization.

Phase 4: Data processing and manipulation.

In IoT projects, data collection process consists of IoT data

acquisition and conventional data acquisition directed on supporting

legacy systems. In turn, IoT data acquisition may involve five

alternative IoT session layer protocols namely AMQP, CoAP, DDS,

MQTT, and XMPP. Depending on the application one or more

protocols for IoT communication can be selected for the target system.

More detail information about protocols and standards for data

collection and transferring can be found in Chapter 29. The detailed

feature diagram given in Fig. 28.3 can be further extended with respect

to specific project requirements.

Data processing features mainly depend on the application type

and include Image/ Video processing, data mining, data logging, and

decision-support features. One or more features might be used at the

same time. Depending on the application requirements these features

can be extended to use different processing features.

Data visualization consists of monitoring and mapping functions.

Monitoring consists of environment monitoring and yield monitoring

functions. Mapping includes yield, soil type, and light mapping

features. System management includes sensor control, actuator control,

system control features such as device identification, node discovery,

and directory and naming services.

Sensor control consists of several sub-features such as soil sensing,

light sensing, weather sensing, and water sensing. Also, system control

includes vehicle control and UAV/Drone control features. Finally,

external services feature contains externally communicated systems

such as weather forecast, finance services, and other external systems.

Mashup tools typically provide a graphic editor for interconnection

of services in one application as well as modeling message flow

between the components. Components can be sensors, IoT gateways,

external Web-services, etc. In this context, mashup methodology can be

28. Basic concepts and approaches to development and implementation of IoT systems

412

seen as specific forms of end-user programming that is limited to the

specific model.

IoT Project

Data Acquisition

External services

System

Management

Data Visualization

Data Processing

System Control

Sensor Control

Monitoring

Actuator Control

Mapping

Data Logging

Decision Support

Data Mining

Image/Video

Proocessing

Conventional Data

Acquisition

IoT Data Acquisition

Weather forecasts

Fig. 28.3 – Data processing in IoT project

28. Basic concepts and approaches to development and implementation of IoT systems

413

As it mentioned in [3], mashup tools can benefit from concepts in

model-based approaches. Also, model-driven approaches can fit better

to the IoT and provide easy to use tools.

28.2 Strategies to planning IoT architectures

There are many variations of the architectural layers, components

and interactions among them. In this section we discuss IoT reference

architectures and features of Industrial IoT System Architecture.

While planning IoT system architecture it is necessary to guarantee

uninterrupted service of all components and fusion the physical and

virtual assets. To reach this goal, the IoT systems have to be

dependable, adaptable, highly-scalable, human-centric and secure. The

overall IoT System Architecture is presented in Fig. 28.4.

Sensing Layer

Network Layer

IoT

Device

Gateway

IoT

Device

IoT

Device

API

Dashboards

Web Portal

Analytics

Event Processing

Service

Layer

Fig. 28.4 – IoT layers

The Sensing Layer includes sensing devices such as sensors,

actuators, embedded systems, and Radio Frequency Identifier (RFID).

28. Basic concepts and approaches to development and implementation of IoT systems

414

The Network Layer includes the gateway and the routes for the

data transmission from gateways to different application users.

The Service Layer provides information services according to the

user and system requirements. The Service Layer may include powerful

data centers and different data servers for the data mining, analysis,

processing, storage, and applications.

Geber A. [12] compared different architectures for several IoT

applications. An example of reference architecture shown in Fig. 28.5

(a) contains the drivers with embedded sensors and actuators, the

gateway, the IoT integration middleware where the processing logic is

executed and the application that uses the data from the previous layer.

Hence, the simplest reference architecture includes three layers:

sensor, network and application. More sophisticated structure could

contain from five to seven levels: device, network, processing,

application, business, management and security.

Device

Application

Device Layer

Network Layer

Processing Layer

Application Layer

Business Layer

S
e

c
u

ri
ty

 L
a

y
e

r

M
a

n
a

g
e

m
e

n
t

L
a

y
e

r

Driver

Gateway

IoT Integration Middleware

Actuator Sensor

Driver

(a) (b)

Fig. 28.5 – The two types of IoT architectures: the IoT reference

architecture (a) [12] and the IoT 7-layer architecture (b) [13, 14]

28. Basic concepts and approaches to development and implementation of IoT systems

415

The architecture (shown in Fig. 28.5 (b) was proposed in [13]. It

gives a similar overview of the IoT layers.

The device layer consists of sensors, actuators, embedded systems

and physical devices. The main task of this layer is to identify and

collect data and specific information obtained from environment by

sensors and IoT-devices. These data is transferred to the network layer.

The network layer is dedicated for networking connectivity and further

transporting data. An alternative name of this layer is transport layer.

The main requirements beside time and quality include providing

secure transmitting data gathered from sensors to the procession layer.

The transmission can be wired and/or wireless.

The procession layer is responsible for service management and

consists of functionality for setting up and taking down of the

association between the IoT connection points. Most of standards and

protocols supporting operation of this layer use the Transmission

Control Protocol (TCP) or the User Datagram Protocol (UDP) for

transport. However, they have different architectures and characteristics

for various purposes.

Feature diagram of procession layer communication protocols of

IoT is given in Fig. 28.6. There are three types of source-target

relations available in procession layer protocols: Device-to-Device

(D2D), Device-to-Server (D2S), Device-to-Server (S2S).

In some studies, these features are respectively: Machine-to-

Machine (M2M), Machine-to-Cloud (M2C), Cloud-to-Cloud (C2C).

Protocol Type

IoT Integration

Middleware

Architecture Transport TypeSource target

MQTT

AMQP

CoAP

DDSXMPP

S2S

D2S

D2D

UDPTCP
Request-

Reply

Publish-

Sunscribe

Fig. 28.6 – Feature diagram of procession layer communication

protocols of IoT [14]

28. Basic concepts and approaches to development and implementation of IoT systems

416

There are many criteria to select the right protocol for IoT

processing layer. Further information on the selection of the proper IoT

session layer protocol could be found in [16].

Procession layer protocols are similar to the ones in the network

layer. For all communication protocols, the transport layer could be

either the UDP or TCP. Some protocols like DDS support both UDP

and TCP.

Another important process is the selection of network layer

protocol since using TCP and/or UDP changes the characteristics of the

communication from performance and security perspectives. As it

mentioned above, the IoT devices have different functionality and

transmission range. For low power devices and networks adoption of

TCP in the network layer is less feasible. Instead, the UDP protocol has

to be used. On the other hand, UDP does not provide common security

protocols (SSL/TLS) that why TCP is required for supporting security

in IoT system. From this perspective, the processing layer protocols can

be either publish-subscribe or request-reply. In publish-subscribe

architecture, sensors send data to a topic on which cloud software that

are registered to this topic read data. Interesting feature that in this

architecture publishers and subscribers do not need to know each other,

and do not need to be operating at the same time.

This type of communication is well suited for data that must flow

from one producer to many consumers. On the other hand, for the

request-reply architecture, senders and receivers do need to know each

other. The requester sends a request message and waits for the

response. When the sensor receives the request, it responds with a reply

message. The session layer protocols of IoT generally use publish-

subscribe architecture except in the case of CoAP in which a request-

reply pattern is adopted.

The application layer consists of different IoT services and

manages the system using the data from the processing layer.

The business layer defines business logic and workflows it takes

care of the ownership and is responsible for the application

management. This layer is dedicated to management of all IoT systems,

services and applications within the domain.

The security layer is a side-car layer relating to the other five

layers and provides the security functionality.

28. Basic concepts and approaches to development and implementation of IoT systems

417

Complexity is one of the biggest challenges during planning IoT

solutions due to they involve many IoT devices that communicate with

each other and with cloud services and applications producing a huge

amount of data. IoT devices can be connected either directly to a

network or through a gateway (Fig. 28.7), which enables the devices to

communicate with each other and with cloud services and applications

[15].

Cloud

IoT hub

Full
Capability

IoT

Constrained
Capability

IoT

Constrained
Capability

IoT

Gateway

Gateway

Data
Analytics

Business
Applications

Users

Fig. 28.7 – Simplified IoT System Architecture

Industrial IoT system architecture presented in Fig. 28.8 includes

IT (Information Technology) and OT (Operational Technology).

OT conditionally divided on two levels and has the following

characteristics: Triggered by event, Changing data, low latency real

time; Use of MQTT, COAP (D2S, ~10ms, collect) or, DDS (D2D,

~0.1ms, distribute).

The first level of edge processing (low latency) involves:

 real time connectivity with data aggregation, device

management, device security, communication gateway and processing;

 support low latency industrial real time process management

and event generation;

 connects actuators, analyzers, drives, vision, video, controllers

and robotics.

28. Basic concepts and approaches to development and implementation of IoT systems

418

Field
Device

Field Hub

Sensors

Actuators

Sensors

Industrial
Hub

Industrial
Device

PLC

1'st level of
Edge processing

1'st level of
Edge processing

1'st level of
Edge processing

1'st level of
Edge processing

Users

2'nd level of
Edge processing

2'nd level of
Edge processing

Data
Analytics

Data
Analytics

Private
Cloud

Public
Cloud IT

OT

Fig. 28.8 – Industrial IoT System Architecture

The second level of edge processing (medium latency) supports

medium latency industrial process management, alarm generation,

storage. Existing plant field is connected with sensors, data

management, advanced analytics, decision making, people, and

automation. This level allows enterprise to control and communicate to

field assets.

Essential differences between IIoT and general class of IoT are:

 a large number of nodes;

 controlled latency at various levels of hierarchical data

processing;

 keep existing plant field running.

The main benefits of IIoT architectures are:

 asset optimization;

 process optimization;

 business Optimization.

Industrial IoT requirements:

 existing manufacturing field industrial I/O devices including

sensors, actuators, analyzers, drives, vision, video, and robotics;

 accommodate large number of nodes;

 controlled latency at various levels of hierarchical processing;

28. Basic concepts and approaches to development and implementation of IoT systems

419

 high reliability, high availability, safe & resilience to failure;

 provides smarter services (monitoring, alarm management);

 non-invasive IT integration with OT.

IT is top down designed from business point of view and is a well-

defined level while OT is defined bottom up with different vendor

proprietary equipment:

 communication network system that works in presence of

internet, intermittent internet or, independent and connects to edge

nodes for real time processing;

 high access security and provision;

 human interaction.

Talking about the overall architectures (Fig. 28.5), we refer to the

reference architectures. It should be mentioned that reference

architectures vary depending on the application domain; however, most

IoT reference architectures describe the following common capabilities:

 managing devices and their data;

 connectivity and communication layers;

 analytics and applications.

Typically, IoT design & implementation teams are cross-

functional in nature and have specialists from different layers (HW,

firmware, networking, data scientists and so on). The IoT expert should

have practical exposure in all the layers and should combine an end-to-

end solution together.

28.3 The base components of the IoT systems

28.3.1 Major types of technological offerings from IoT

From previous chapters we define five main components that

support the Internet of Things. Depending on levels of complexity they

include: things (sensors, actuators, smart devices, and embedded

systems), IoT gateways or simple hubs, cloud or integrating hubs, and

enhanced services. Moving up, the components become more complex

and their connectivity increases [17]:

1. Sensors, actuators, smart devices, and embedded systems are the

components of the sensing layer. They collect data from different

physical, human, and natural environments in an intelligent and

28. Basic concepts and approaches to development and implementation of IoT systems

420

collaborative way, and temporarily store these data. Their connectivity

enables two key capabilities: gathering and analyzing data from the

environment.

2. IoT gateways (Simple hubs) are the devices that connect

endpoints to broader networks. When integrated into products such as

vehicle engines; washing machines; or home heating, venting, and air

conditioning (HVAC) systems, the computing intelligence and storage

embedded in a simple hub allows these products to adapt over time to

the user’s behavior and to optimize for efficiency.

3. Integrating hubs connect simple hubs and provide a diverse

array of services that fit more or less seamlessly together.

4. Network and cloud services provide the infrastructure for

functioning IoT. They can either be public (accessible to the population

at large) or private (protected behind an organization’s firewall). These

services deliver the seamless and transparent connection to the Internet

that hubs require, along with the cloud computing power needed to

collect, store, and analyze vast amounts of data from myriad endpoints.

They can also provide the infrastructure needed to build or connect to

social networks, so that users of the IoT can compare experiences and

share data.

5. Data centers, services and analytics this category comprises the

most technologically sophisticated components of the IoT. Enhanced

services enable to collect and analyze data from different platforms and

deliver broad interactive functions.

These five technological options, from endpoints to enhanced

services, provide a menu of diverse opportunities for companies

building IoT businesses. There are several technological options (levels

of complexity) on the road of developing IoT ecosystems (Table 28.1).

Depending on complexity levels they may include all major types

of technological offerings from IoT: IoT devices, simple hubs,

integrating hubs, and enhanced services.

28. Basic concepts and approaches to development and implementation of IoT systems

421

Table 28.1 – Technological options for developing IoT solutions [17]

Tasks

Levels of complexity

Smart devices

and Sensors

IoT gateways /

Simple Hubs
Integrating Hubs

Services

Analytics

Optimiz

ation

 Industrial platforms for

interconnecting analytics engines

and business operations

Large-scale digital city systems

Adaptat

ion

Stand-alone

GPS navigation

devices

Auto insurance

telematics systems

Smartphone apps

that use location

tracking

Protocol-based

platforms allowing

diverse devices in

a building to

interconnect to one

another and

internet

Emerging

systems for

setting

insurance

rates based

on health

and driving

behavior

Control Motion- or light

responsive

alarms and

controls

Internet-connected

systems for

heating, cooling,

and ventilation

Bluetooth-enabled

object

identification

sensor systems

(iBeacon, Estimote

Beacon)

Systems for

controlling lights

and appliances

through remote or

mobile devices

Potential

connected

car traffic

manageme

nt systems

Monitor

ing

Simple

thermostats and

motion sensors

Fitness activity

sensors and hub

systems

Medical wearables

that feed data to

online diagnostic

platforms

28.3.2 IoT device classification

Devices are the base components of IoT infrastructure; they can be

classified in many ways based on the type of data they handle such as,

environmental, medical, financial, etc. or the economical sector where

they are used such as, manufacturing, transportation, retail, consumer

and home.

28. Basic concepts and approaches to development and implementation of IoT systems

422

Geber et al. [15] characterize IoT devices on their high-level

capabilities:

 data acquisition and control;

 data processing and storage;

 connectivity;

 power management.

Another classification for IoT devices based on the potential risks

and impact on living beings during their operating is proposed in [18].

According to this view, IoT devices classified on three types:

Type A: If the loss of one or all of the security objectives causes

severe physical, economic or social harm to the living thing. For

example, malfunction of wireless pacemaker, a vehicle brake system, or

a farm irrigation system.

Type B: If the loss of one or all of the security objectives causes

minor physical, economic or social harm to the living thing5. For

example, malfunction of one of the components of a heating,

ventilation and air conditioning (HVAC) control system may cause heat

exhaustion to humans and animals.

Type C: If the loss of one or all of the security objectives causes

very minor or no harm to the living thing. For example, a cash register

cannot process financial transactions online.

Table 28.2 – Examples of IoT devices and their types as it proposed in [18]

Type A Type B Type C

Medical pumps,

monitors, implants,

connected cars.

HVAC control

systems, traffic lights.

Alarms, cameras,

dishwashers, lights,

garage openers.

The selection of any type of IoT is a risk-based decision that

should take into account other factors unique to the IoT system goals.

In this case, developers can expand each type with “subtypes” to offer

further sub-classification and granularity or create an IoT risk index.

For example, Type A(1) = Life support system, Type A(2) = stand-

alone wireless blood pressure monitor.

28. Basic concepts and approaches to development and implementation of IoT systems

423

28.3.3 IoT device design flow

IoT device design consists of software development for Central

Process Unit (CPU) implementation, interface drivers, and, when

application demands dictate, hardware design for custom accelerators,

CPU customization, and board-designs. Typical IoT device design

flowchart is depicted in Fig. 28.9.

Many IoT applications begin with prototyping both hardware and

software on existing platforms. To minimize design and development

costs, it is possible to reuse existing platforms. In this case, initial

prototypes are typically designed on existing CPU-based platforms.

With the initial implementation, designers can evaluate performance

and quality to determine whether a CPU-only, Graphics Processing

Unit (GPU)-based, or Field-Programmable Gate Array (FPGA)-based

platform is necessary to achieve goals [19].

To minimize time-to-market, software and hardware are often

developed at the same time. A software team is concentrating on

software features, embedded compilation, drivers and device

integration with cloud computation services. In parallel, the hardware

team performs system-level modeling, component selection, design

implementation, integration and verification. Despite the generally

parallel development processes, the software and hardware design

flows influence each other; software algorithm demands may alter

hardware performance objectives, and hardware implementation

choices can influence how software is designed and implemented.

Fig. 28.9 – Typical IoT device design flowchart [19]

28. Basic concepts and approaches to development and implementation of IoT systems

424

When designing IoT device, it is necessary to solve a number of

issues related to the implementation of the following set of required

components:

 devices and/or sensors for measuring the selected parameters;

 the method of placement of sensors that will be constantly in

contact with the object of monitoring;

 power supply sources;

 data transmission facilities;

 housing for installation and protection of measuring

instruments and accessories;

 tools to protect the station from possible interference and the

environment.

Indeed, if a hardware implementation is created, there may be no

need for design and optimization of the software version.

28.3.4 Relationship between Sensor Networks and IoT

The sensor networks are the second essential component of the

IoT-based system. The IoT comprises sensors and actuators. The data is

collected using sensors. Then, it is processed and decisions are made.

Finally, actuators perform the identifiable system operations (Fig.

28.10).

SENSOR ACTUATOR

THING
HUMAN

ENVIRONEMENT

DEVICE

SEND DATA

CHANGE STATUS

COMMUNICATE
WITH DEVICE

Fig. 28.10 – Interaction structure by means of sensor and actuator

The differences between Sensor Network (SN) and the IoT are

largely unexplored and blurred. We can elaborate some of the

characteristics of both SN and IoT to identify the differences (Fig.

28.11).

28. Basic concepts and approaches to development and implementation of IoT systems

425

SN comprises of the sensor hardware (sensors and actuators),

firmware and a thin layer of software. The IoT comprises everything

that SN comprises and further it comprises a thick layer of software

such as middleware systems, frameworks, APIs and many more

software components. The software layer is installed across

computational devices (both low and high-end) and the cloud.

IoT ServicesIoT Services IoT ServicesIoT Services

Sensor Actuator Sensor Actuator

Internet/Cloud Internet/Cloud

a b

(a) (b)

Fig. 28.11 – Two approaches for device connection: direct network

connection (a) and connection through the gateway (b)

From their origin, SNs were designed, developed, and used for

specific application purposes.

In the early days, sensor networks were largely used for

monitoring purposes and not for actuation. In contrast, IoT is not

focused on specific applications, instead IoT can be considered as a

general purpose sensor network.

28. Basic concepts and approaches to development and implementation of IoT systems

426

During the stage of deploying sensors, the IoT would not be

targeted to collect specific types of sensor data, rather it would deploy

sensors where they can be used for various application domains. For

example, company may deploy sensors, such as pressure sensors, on a

newly built bridge to track its structural health. However, these sensors

may be reused and connect with many other sensors in order to track

traffic at a later stage. Therefore, middleware solutions, frameworks,

and APIs are designed to provide generic services and functionalities

such as intelligence, semantic interoperability, context-awareness, etc.

that are required to perform communication between sensors and

actuators effectively.

Sensor networks can exist without the IoT. However, the IoT

cannot exist without SN, because SN provides the majority of hardware

(e.g. sensing and communicating) infrastructure support, through

providing access to sensors and actuators. There are several other

technologies that can provide access to sensor hardware, such as

wireless ad-hoc networks. However, they are not scalable and cannot

accommodate the needs of the IoT individually, though they can

complement the IoT infrastructure.

28.4 The IoT development boards and platforms for

prototyping

In many cases, IoT development process includes prototyping

using a single platform or their combinations that matches the desired

target as closely as possible. IoT development boards contain standard

communications, sensor interfaces, and general purpose I/O

connections so that the user can easily integrate sensors, actuators,

communications, and Micro Electromechanical System (MEMS) to

prototype their system.

Although these prototypes will not be used for production releases,

they play an important role in demonstrating a proof-of-concept and

evaluating overall feasibility. Prototypes may have limited modeling

fidelity to the final product characteristics, yet even rough estimates of

size, power/energy, performance, and reliability can be represented as

expected product feasibility [19].

28. Basic concepts and approaches to development and implementation of IoT systems

427

For prototyping certain IoT project an existing CPU boards, GPU

boards, or FPGA boards can be used, as shown in Fig. 28.12.

Fig. 28.12 – Examples IoT development boards [19]

The most popular IoT platforms for prototyping are Arduino,

Raspberry Pi, ESP8266 and Spark Core. Table 28.3 summarizes

information about these platforms to understand their capabilities and

limitations.

The Raspberry Pi is ideal for study server-based IoT projects. It

can connect to both LAN and Wi-Fi networks. However, it is not

recommend using the Raspberry Pi for projects where there is a custom

made Printed Circuit Board (PCB) or to integrating Raspberry Pi into a

finished product.

Arduino is ideal for logging sensor data and controlling actuators

via commands posted on the server by another client.

Table 28.3 – Comparison of IoT platforms for prototyping

Prototyping

platform

Connecting to

the Internet
Features Advantages Disadvantages

Arduino Arduino Yun
has built-in
capability to
connect to Wi-
Fi and LAN
networks,

others rely on
the Wi-Fi shield
and Ethernet
shield

Device

capabilities vary

across the

official Arduino

models, and

between the

dozens of third-

party compatible

boards.

- easy to use

- has a huge

community

for technical

support.

- easy to

create a

prototype

- all Arduino

boards, apart

from Yun, need

an external

module so as to

connect to the

internet.

Raspberry

Pi

Wireless or via

an Ethernet

cable.

High storage

space, RAM,

powerful

processor.

- don’t need
extra shields
or hardware
to connect to

- not easy to set

up and code

apps

- cannot be

28. Basic concepts and approaches to development and implementation of IoT systems

428

Supports many

programming

languages to

create server-

side apps

the internet.

- automatic
connecting to
wi-fi or
LAN, so long
as the router
that has
DHCP
configured.

- a huge
Raspberry Pi
community.

easily

integrated into a

product

- numerous OS

- not easy to

decide on the

best OS for the

device you are

creating.

ESP8266 Self-contained

Wi-Fi module

that can provide

any

microcontroller

with access to

Wi-Fi networks

Preprogramd AT

commands that

enable to hook it

onto Arduino

board and use

Wi-Fi

capabilities.

Easy connecting

to Arduino

board or another

microcontroller

over UART.

The module can

be integrated

with application

specific devices

and sensors

easily through

its GPIOs.

- plug and

play Wi-Fi

module.

- don’t need

to write huge

chunks of

code to get

started.

- very cheap,

- easy to

integrate the

ESP8266 on

a PCB

- perfect for

building

prototypes

- lack of SPI
communication
and support of
SSL.

- doesn’t have
5V to 3V logic
level shifting

- lacks of
voltage
regulator on-
board

- sometimes
uses big spikes
of current (the
Arduino cannot
supply).

- need to use
an external 3.3v
voltage
regulator.

- harder to use
in comparing to
other platforms

Spark Core Wi-Fi enabled

IOT

development

platform.

The back end of

the Spark Core

is a website

platform cloud

that allows to

send and

receive data.

TM32F103CB

ARM 32-bit

Cortex M3-

based

microcontroller

and CC3000

Wi-Fi module

easy to
integrate on a
PCB as the
Spark Photon
chip, it is
easy to use,
has a good
online
community
and comes
connected to
a cloud
platform.

it is linked to

the Spark

platform, which

you have no

control over

28. Basic concepts and approaches to development and implementation of IoT systems

429

There are some instances where Arduino boards are used for

server functions such as hosting a simple web page.

The ESP8266 is best used in client applications such as data

logging and control of actuators from online server applications.

The Spark Core platform is ideal for both server and client

functions. It can be used to log sensor data onto the Spark.io cloud or

receive commands from the cloud. Spark cloud is available for free.

28.5 The IoT platforms: types and selection criteria

An IoT platform plays an important role in the IoT architecture.

When building an IoT project or system, connected devices send data to

cloud platforms. These platforms store data and use it to build charts.

Table 28.4 – Type of services

Type of IoT

Platform
Overview Example

End-to-End Provide the hardware, software,

connectivity, security, and device

management tools to handle millions of

concurrent device connections

Particle

Connectivity

Management

Platforms

Low power and low cost connectivity

management solutions through Wi-Fi and

cellular technologies

Mulesoft,

Hologram,

Sigfox

IoT Cloud Monitor and tack millions of simultaneous

device connections.

Google Cloud

IoT,

Salesforce

Cloud IoT

Data Platform Combine different tools to route device

data and manage / visualize data analytics

Clearblade,

Azure,

ThingSpeak

An IoT platform is an integrated service that offers us the things

we need to bring physical objects online and provides the following

services:

 rapid application development and deployment;

 device management;

 integration;

 data storage;

https://www.particle.io/
https://www.mulesoft.com/integration-solutions/api/iot
https://hologram.io/
http://sigfox.com/
https://cloud.google.com/
https://cloud.google.com/
https://www.salesforce.com/
https://www.salesforce.com/
https://www.clearblade.com/
https://www.microsoft.com/en-us/internet-of-things/azure-iot-suite
https://thingspeak.com/

28. Basic concepts and approaches to development and implementation of IoT systems

430

 dashboard creation;

 security services.

The relative importance of these capabilities will vary from project

to project and depend on the use case.

There are hundreds of IoT platforms available from a range of

vendors. Before starting new project you should to assess your business

needs and analyze how will your needs change over time.

There are following selection criteria for choosing the right

Internet of Things platform for your project [20, 21]:

 connectivity: the type of connectivity (a Wi-Fi or cellular

solution) for IoT system;

 type of service: some services are purely connectivity

platforms, while others are end-to-end solutions that offer the hardware,

software, and connectivity;

 solution lifetime: how long has the IoT platform been in

business? The IoT platform offering services for 4+ years is a good

solution;

 geographic coverage: does the IoT platform cover the regions

your business needs?;

 data plan: does the vendor offer a fair data plan, for example if

you decide to pause or suspend your data services at any time as well as

the ability to control amount of data that is used. It is essential to

achieve a vendor/technology agnostic solution which is easily

transferable to someone else in case such needs arise;

 security / privacy: assess how IoT platform combats security

issues. The Gateways of your cloud platform should offer SSL or

DTLS encryption;

 managed integrations / API Access: how does the vendor

integrate cellular modems, sim-cards, device diagnostics, firmware

updates, cloud connections, security, application layer, RTOS, etc., into

a simple package;

 redundancy and disaster recovery: does your cloud platform

provider have a dedicated infrastructure to handle your data? How often

is the data backup taken?;

 IoT ecosystem: the relationships between the services the IoT

platform;

28. Basic concepts and approaches to development and implementation of IoT systems

431

 data access: does the service match you needs in integrating the

data acquired through the IoT platform with current cloud service?;

 hardware: does the vendor offer any off-the-shelf applications,

developer kits, or starter packages for the specific use case you are

targeting?;

 device management: how does the vendor allow your to

monitor, segment, and manage IoT devices that are out in the field?;

 edge intelligence: IoT platform needs to be able to extend itself

seamlessly from cloud to fog and even mist and support new topologies

for decentralized computing;

 OTA firmware updates: how does the vendor allow you to send

updates and fix bugs on your devices remotely? It is a simple or

complex process?

28.6 Work related analysis

Approaches to design and development of IoT-based systems has

been proposed for several applications in software development life-

cycle for the Internet-of-Things [7], designing autonomic systems and

investigating their ability to support IoT challenges [22], identification

of design challenges and developing a model-driven methodology for

the IoT-Based Systems [5, 7], using Computational Notebooks for IoT

Development [23].

Our partners from EU universities are actively involved in research

and development for IoT-based systems, applying new knowledge in

business and the educational process. For example, the University of

Coimbra suggests several courses in this topic, namely, “Intelligent

Sensors”, “Emergent Internet services”. The objectives of course on

Emergent Internet services are the knowledge about telematics

applications fundamentals, Internet applications and emerging Internet

services.

School of Engineering at Newcastle University focuses on a broad

range of communications, sensors and signal processing. One of their

courses EEE8009 “Wired and Wireless Network Technologies”

introduces a broad coverage of modern communication networks and

network technologies, transmission and switching; to provide students

with knowledge of the issues relating to modern telecommunications

systems, protocols, flow and error control. Another one is “Embedded

28. Basic concepts and approaches to development and implementation of IoT systems

432

Systems and Internet of Things” (ES-IoT) delivers an understanding of

Embedded Systems and Internet of Things and their enabling

technologies. It is industrially focused, tailored to the demands of

companies that design and manufacture mobile electronic [24]. This

course gathers five fields of knowledge which work well together:

tools, techniques and design of Embedded Systems and Internet of

Things (ES-IoT) and subsystems; scientific and engineering principles

and practices of Computing Science and Electronic Engineering;

embedded computer systems architecture; networking and

communication systems; computer programming.

Conclusions and questions

In this chapter, the materials for module PCM4.1 “Basic concepts

and approaches to development and implementation of IoT systems” of

PhD course “Development and implementation of IoT-based systems”

are presented. They can be useful for preparation to lectures and self-

learning for lecturers, PhD-students, IoT developers, etc.

In field of IoT solutions, research challenges are distributed in

almost all aspects of their development and implementation, ranging

from the enabling devices to the top level business models. So the

research space for a complete IoT solution shows a cross-layer and

multidisciplinary pattern

We intend to raise a series of research problems about the IoT

architectures, device architectures and system integration to obtain an

efficient IoT system. Also, we discussed an effective research approach

to resolve an essential challenge in nowadays research on the IoT – the

lack of basic technology, standards, and practical business

requirements.

To develop a comprehensive solution for a particular application,

developers must integrate multidisciplinary knowledge of ICT,

management, business administration, and the target application.

Moreover, to obtain good solution, the specific knowledge of the target

area and application is essential. This chapter is directed on encourage

readers on continue investigating the design methodologies and system

models as well as development new applications.

28. Basic concepts and approaches to development and implementation of IoT systems

433

In order to better understand and assimilate the educational

material that is presented in this section, we invite you to answer the

following questions.

22. What are the key characteristics of IoT industry?

23. Phases and deliverables of an IoT technical strategy?

24. What are the main strategies for developing IoT systems?

25. What are the differences between mashup-driven and model-

driven approaches?

26. What methodology best fits to quick prototyping?

27. What are the main phases of mashup-based methodology?

28. How many layers can IoT architecture consist of?

29. What are the requirements for network layer?

30. What is the reference architecture?

31. What are the main benefits of IIoT architectures for

enterprises?

32. What are the major types of technological offerings from IoT?

33. Which technological options provide diverse opportunities for

companies building IoT businesses?

34. What types of IoT devices are known?

35. What are the differences between sensor network (SN) and

the IoT?

36. What are selection criteria for choosing the right Internet of

Things platform for your project?

References

1. Y. Zhang and J. Yu, "A Study on the Fire IOT Development

Strategy", Procedia Engineering, vol. 52, pp. 314-319, 2013. DOI:

10.1016/j.proeng.2013.02.146.

2. "Defining your IoT governance practices", IBM Developer, 2019.

[Online]. Available: https://developer.ibm.com/articles/iot-governance-01/.

[Accessed: 25- Feb- 2019].

3. C. Prehoferand and L. Chiarabini, "From Internet of things mashups to

model-based development". IEEE 39th Annual Computer Software and

Applications Conference, pp. 499-504, September 2015.

https://doi.org/10.1109/COMPSAC.2015.263

4. M. Blackstock and R. Lea "IoT mashups with the WoTKit", IEEE 3rd

International Conference on the Internet of Things (IOT 2012), pp. 159–166,

October 2012. https://doi.org/10.1109/IOT.2012.6402318

https://doi.org/10.1109/COMPSAC.2015.263

28. Basic concepts and approaches to development and implementation of IoT systems

434

5. E. Mezghani, E. Expósito, K. Drira, "A Model-Driven Methodology for

the Design of Autonomic and Cognitive IoT-Based Systems: Application to

Healthcare", IEEE Transactions on Emerging Topics in Computational

Intelligence, Vol. 1 (3), pp. 224-234, June 2017.

DOI: 10.1109/TETCI.2017.2699218

6. F. Fleurey and B. Morin, "ThingML: A Generative Approach to Engineer

Heterogeneous and Distributed Systems". IEEE International Conference on

Software Architecture Workshops (ICSAW), pp. 185–188, April 2017. https:

//doi.org/10.1109/ICSAW.2017.63

7. J. Dias and H. Ferreira, "State of the Software Development Life-Cycle

for the Internet-of-Things", Arxiv.org, 2019. [Online]. Available:

https://arxiv.org/pdf/1811.04159. [Accessed: 25- Feb- 2019].

8. D. Guinard, V. Trifa, E. Wilde, "A resource oriented architecture for the

web of things", Internet of Things (IOT), November-December 2010.

DOI: 10.1109/IOT.2010.5678452

9. M. Blackstock and R. Lea, "IoT mashups with the WoTKit", 3rd

International Conference on the Internet of Things (IOT), pp. 159–166, October

2012. DOI: 10.1109/IOT.2012.6402318

10. A. Pintus, D. Carboni, A. Piras, "Paraimpu: a platform for a social web of

things", 21st International conference companion on World Wide Web. ACM, pp.

401-404, April 2012. [Online]. Available: https://www2012.universite-

lyon.fr/proceedings/companion/p401.pdf [Accessed: 01- Oct- 2018].

11. A. Rule, A. Tabard, J. Hollan, "Exploration and Explanation in

Computational Notebooks". CHI Conference on Human Factors in Computing

Systems - CHI ’18, paper No. 32, April 2018. DOI:10.1145/3173574.3173606

12. J. Guth, U. Breitenbücher, M. Falkenthal, F. Leymann, L. Reinfurt,

"Comparison of IoT Platform Architectures: A Field Study based on a Reference

Architecture". IEEE Conference on Cloudification of the Internet of Things (CIoT),

pp. 1-6, November 2016.

13. M. Wu, T. Lu, F. Ling, J. Sun, H. Du, "Research on the Architecture of

Internet of Things". 3rd International Conference on Advanced Computer Theory

and Engineering (ICACTE). Vol. 5, pp. 484–487, August 2010.

14. Ö. Köksal and B. Tekinerdogan, "Architecture design approach for IoT-

based farm management information systems", Precision Agriculture, 2018.

Available: 10.1007/s11119-018-09624-8 [Accessed 25 January 2019].

15. A. Geber, "Simplify the development of your IoT solutions with IoT

architectures", IBM Developer, 2019. [Online]. Available:

https://developer.ibm.com/articles/iot-lp201-iot-architectures/. [Accessed: 25

January 2019].

16. Ö. Köksal and B. Tekinerdogan, "Feature-driven domain analysis of

session layer protocols of Internet of Things". IEEE International Congress on

28. Basic concepts and approaches to development and implementation of IoT systems

435

Internet of Things, ICIOT, pp. 105–112, June 2017.

https://doi.org/10.1109/IEEE.ICIOT.2017.19.

17. F. Burkit, "A Strategist’s Guide to the Internet of Things", [Online].

https://www.strategy-business.com/article/00294?gko=a9303 [Accessed: 25- June-

2019].

18. F. Uribe, "The Classification of Internet of Things (IoT) Devices Based

on Their Impact on Living Things", SSRN Electronic Journal, 2018. DOI:

10.2139/ssrn.3350094.

19. D. Chen, J. Cong, S. Gurumani, W.-m. Hwu, K. Rupnow, Z. Zhang

"Platform choices and design demands for IoT platforms: cost, power, and

performance tradeoffs", Journal IET Cyber-Physical Systems: Theory &

Applications, pp. 1-8, 2016.

20. J. Lee, "How to Choose the Right IoT Platform: The Ultimate Checklist".

[Online]. Apr. 25, 2018. https://hackernoon.com/how-to-choose-the-right-iot-

platform-the-ultimate-checklist-47b5575d4e20 [Accessed: 25- June- 2019].

21. "Top 10 selection criteria to choose your IoT platform" [Online].

https://iotify.io/top-10-selection-criteria-for-your-iot-cloud-platform/ [Accessed:

25- June- 2019].

22. C. Vidal, C. Fernández-Sánchez, J. Díaz, J. Pérez, "A model-driven

engineering process for autonomic sensor-actuator networks," International Journal

of Distributed Sensor Networks, vol. 2015, p. 18, 2015.

23. F. Corno, L. De Russis and J. Sáenz, "Towards Computational

Notebooks for IoT Development", Extended Abstracts of the 2019 CHI

Conference on Human Factors in Computing Systems - CHI EA '19, 2019. DOI:

10.1145/3290607.3312963.

24. "Embedded Systems and Internet of Things MSc - Postgraduate -

Newcastle University", Ncl.ac.uk, 2019. [Online]. Available:

https://www.ncl.ac.uk/postgraduate/courses/degrees/embedded-systems-internet-

of-things-msc/#profile. [Accessed: 25- June- 2019].

https://doi.org/10.1109/IEEE.ICIOT.2017.19
https://www.strategy-business.com/article/00294?gko=a9303
https://hackernoon.com/how-to-choose-the-right-iot-platform-the-ultimate-checklist-47b5575d4e20
https://hackernoon.com/how-to-choose-the-right-iot-platform-the-ultimate-checklist-47b5575d4e20
https://iotify.io/top-10-selection-criteria-for-your-iot-cloud-platform/

29. Models for IoT-based devices and technologies for data processing and transfer

436

29. MODELS FOR IOT-BASED DEVICES AND

TECHNOLOGIES FOR DATA PROCESSING AND TRANSFER

Prof., DrS. Yu. P. Kondratenko, Ass. Prof., Dr. G.V. Kondratenko,

Ass. Prof., Dr. Ie.V. Sidenko, Ph.D. Student M.O. Taranov (PMBSNU)

Сontents

Abbreviations .. 437

29.1 IoT-based devices: models and network communication protocols

 ... 438

29.1.1 Types of models for IoT-based devices 438

29.1.2 Tools and means for the development of information models 441

29.1.3 Network communication protocols for IoT-based devices 445

29.2 Technologies for data processing in IoT-based systems 447

29.2.1 Technologies for data collection and analysis from IoT devices

 ... 447

29.2.2 Technologies for data processing ... 451

29.2.3 Methods of management and forecasting 453

29.3 Protocols and standards for data transfer between IoT-based

devices ... 456

29.3.1 Protocols for data transfer ... 456

29.3.2 Standards for data transfer .. 458

29.3.3 Cybersecurity of IoT-based devices 461

29.4 Work related analysis .. 464

Conclusions and questions... 466

References ... 467

29. Models for IoT-based devices and technologies for data processing and transfer

437

Abbreviations

CARP – Common Address Redundancy Protocol

CoAP – Constrained Application Protocol

DDS – Data Disturbing Service

DODAG – Destination Oriented Directed Acyclic Graph

DSL – Dictionary Specification Language

IEEE – Institute of Electrical and Electronics Engineers

IoT – Internet of Things

LPWAN – Low-Power Wide Area Network

MQTT – Message Queuing Telemetry Transport

NFC – Near Field Communication

OFDM – Orthogonal frequency-division multiplexing

PBCC – Packet Binary Convolutional Coding

QR – Quick Response Code

RFID – Radio Frequency IDentification

RPL – Routing over Low Power and Lossy Networks

STOMP – Simple (or Streaming) Text Oriented Message

Protocol

UDP – User Datagram Protocol

WLAN – Wireless Local Area Network

XMPP – Extensible Messaging and Presence Protocol

29. Models for IoT-based devices and technologies for data processing and transfer

438

29.1 IoT-based devices: models and network communication

protocols

29.1.1 Types of models for IoT-based devices

A special role in the technology of the "Internet of Things" (IoT) is

played by measuring instruments that provide the transformation of

information about the external environment into data for further

processing by IoT devices (IoT-based devices). At present, a wide

range of measuring devices is used, from elementary sensors (eg,

temperature, pressure, illumination), consumption accounting or

metering devices (such as smart meters) to complex integrated

measuring systems. Within the framework of the concept of the

"Internet of Things", it is fundamental to combine measuring devices in

the network (such as wireless sensor networks, measuring complexes),

which enables the construction of interoperability systems [1, 2].

Nowadays, the IoT device is considered to be any device that can

receive indications (data) from the environment and transfer them to a

database, where they can be saved and, in some cases, analyzed.

Therefore, the necessary condition is to connect devices to the

computer network one way or another [1].

There is a sufficient number of classifications of IoT devices

created by different manufacturers of both hardware and software. For

example, Google has developed its classification of IoT devices for its

own Google Smart Assistant platform [3].

To simulate the interaction between the IoT device and the IoT

platform, you need to create an abstract description of the device, or so-

called information model. On the basis of an information model, a code

can be generated in the programming language required for the

platform [1].

The information model of the IoT-device should be understood as

the model of the object, which is presented in the form of information

describing the essential parameters for this object and variables, the

links between them, inputs and outputs, and allows you to simulate

possible states of an object by submitting input data to the model [3].

Also, the term information model can be regarded as a set of

information that characterizes the essential properties and states of the

object, process, phenomenon, as well as the relationship with the

29. Models for IoT-based devices and technologies for data processing and transfer

439

surrounding world. The existence of Internet technology is impossible

without the existence of information models of IoT devices that need to

be linked to the network [1].

One of the open source software tools that can be used to create

information models is Eclipse Vorto (Fig. 29.1). This is an open source

software tool that allows you to create and manage technologies that are

compatible with other systems as well as information models.

Information models, in the context of the software for their creation, are

understood as a description of the attributes and capabilities of a real

device. These models can be managed and shared in Vorto Information

Model Repository which are repositories for information models. Also,

Vorto allows you to integrate devices on different platforms [4].

Fig. 29.1 – The structure of the Eclipse Vorto and its components [4]

The benefits of the Eclipse Vorto software are that with the help of it

there can be solved the following tasks [5]:

1. Development of information models of devices (description of

devices and their purpose).

Interoperability is one of the most important criteria in IoT. It is

fulfilled with the help of IoT-platforms that are able to integrate devices

and create an infrastructure for interoperability. It is important for device

providers to enable platform vendors to integrate their devices without

29. Models for IoT-based devices and technologies for data processing and transfer

440

much effort. A device that can be integrated on different platforms can be

used in different scenarios. The Eclipse Vorto toolkit lets one create

abstract, technological descriptions of devices. These descriptions are read

and, thus, can be converted into the formats required to integrate into a

particular platform. By providing such a description of the device, the

device vendor makes it easy to integrate devices into platforms for which

there are Vorto code generators [5].

In order to create an information model using Eclipse Vorto, you

need to take the following steps [4]:

а) download Eclipse Vorto Perspective;
b) open Model Repository Browser;

c) select model and generator (s), for example, Constrained

Application Protocol (CoAP).

2. Creating platforms.

There are plenty of smart devices in the market. The client should

not be restricted by the devices of specific vendors, for example, the

platform which its IoT environment is based on may not support other

devices. At the same time platform vendors should integrate as many

different types of IoT devices on their platform. Eclipse Vorto allows you

to create a platform-specific code generator that transforms information

models into the formats required to integrate into a specific platform. After

implementing an appropriate code generator, it is easy to integrate the IoT

devices that are available in the Eclipse Vorto repository [1, 4, 5].

3. Developing solutions.

Decision makers that integrate IoT devices into specific platforms

must write the code using information about the corresponding IoT device.

The Eclipse Vorto software code generator infrastructure lets one do this

automatically, which greatly reduces the programmer’s or developer’s time

[5].

The process of constructing the information model of an IoT device

includes the definition of the sources of personal data and their formats, the

construction of a model and data structure and their further analysis (Fig.

29.2).

The corresponding technology of the independent abstraction of the

IoT device creates a standard: the information model can be transformed

into different formats, that is, the specific components of the model serve

as a base for integration into different platforms.

29. Models for IoT-based devices and technologies for data processing and transfer

441

Fig. 29.2 – Scheme of the process of creating an information model of

the IoT device

29.1.2 Tools and means for the development of information

models

There are a large number of resources available on the market of

software tools and means that allow the development of information

models, track and process information from IoT devices. Most of them

have some of the following features [2]:

 adding an informational model;

 displaying received data in real time in the form of diagrams;

 realization of data transmission using the Message Queuing

Telemetry Transport (MQTT) protocol.

The corresponding resources which have this feature are ThingBoard

(Fig. 29.3), Ubodots IoT dashboards (Fig. 29.4), Node-Red-UI,

freeboard.io, and others [6].

Fig. 29.3 – The ThingBoard Web Application Interface [6]

29. Models for IoT-based devices and technologies for data processing and transfer

442

These software tools enable adding information models to IoT

devices and visualizing received data in real time, but they do not use

the means of data mining (means of intellectual data analysis).

Fig. 29.4 – Ubidots IoT dashboards web application interface [6]

The Eclipse Vorto software tool is a tool for creating information

models for a variety of IoT devices and generating the code of the

relevant models for different types of IoT platforms [5].

Vorto solves the problem of describing IoT devices from different

manufacturers in the form of information models. Such models are

described at the abstraction level, thus they are not connected with any

technological platform (Fig. 29.5).

For each functional block, the set of operations which it can

perform and the set of events it processes is determined. The

information model of functional blocks is created using the Dictionary

Specification Language (DSL) [1, 4].

The convenience of using Vorto components is that users are not

restricted to the formats of IoT devices or IoT platforms. Vorto offers

mechanisms that let users use code generators that can convert the

description of Vorto IoT-devices to various formats [5]. Available

29. Models for IoT-based devices and technologies for data processing and transfer

443

formats include programming languages, such as Java and C ++, as

well as formats for documentation purposes. It is also possible to

transform models into formats defined by standardization organizations

and industry consortia.

Fig. 29.5 – The scheme of the process of creating an information model

by Eclipse Vorto

The information model of the Vorto IoT device contains various

types of functional blocks, data types, and transfer units (Fig. 29.6).

A functional block provides an abstract view of the necessary

functions of the IoT device for using with a specific application. Thus,

it is a consistent set of functions. The corresponding set can be

associated with a specific component of the device, for example, a

battery, a global sensor, or a switch. Functional blocks have properties

(attributes) and behavior patterns (operations). To ensure compatibility

between different resources, the description of the functional block

should be as abstract as possible. Functions which are specific to the

device and cannot be modeled abstractly can be encapsulated, for

example, in the functional unit of the device [4, 5].

Data types and conversion units are the smallest units of the

model. They represent the states or properties of the model elements.

Information models are well structured and standardized but have

some limitations. For instance, as the impossibility of implementing the

logic of data transmission over protocols and receiving commands from

29. Models for IoT-based devices and technologies for data processing and transfer

444

a server or monitoring system. Consequently, these models have only

informational character.

Fig. 29.6 – Structure scheme of the information model

Below is an example of the information model of the IoT device

developed for controlling the indoor climate using the Eclipse Vorto.

Functional temperature sensor unit:
functionblock TemperatureSensor {

status {

mandatory currentTemperature as float with {

measurementUnit : TemperatureUnit.Celsius

}

"Indicates the current temperature in Celsius."

}

}

29. Models for IoT-based devices and technologies for data processing and transfer

445

Generated Data Types (Listing):
description "Enum containing temperature measurement units."

enum TemperatureUnit {

 Celsius "Measurement unit: degree celsius.",

 Fahrenheit "Measurement unit: degree fahrenheit."

}

The information model of the device for obtaining the data of the

environment conditions of the room:
infomodel EnvironmentState {

 functionblocks {

 humiditysensor as HumiditySensor

 temperaturesensor as TemperatureSensor

 }

}

29.1.3 Network communication protocols for IoT-based devices

After completing the stage of creating the information model of

the IoT device and generating the code for the selected IoT platform, it

is necessary to determine the protocols for connecting IoT devices to

the network [1, 2].

Consider the following protocol options for connecting devices on

the network [7, 8]:

1. MQTT.

The message queuing telemetry transport protocol [2] was created

about 15 years ago to monitor distant sensor nodes and was designed to

save both energy and memory. The relevant protocol is based on the

Publish-Subscribe communication model, in which the intermediary is

responsible for transmitting messages to the clients of MQTT. It allows

multiple clients to post messages and receive updates on various topics

from the central server. It looks like subscribing to the YouTube

channel, where you get a notification each time a new video is

published.

Using the MQTT, the connected IoT device can subscribe to any

number of topics that are hosted by the MQTT. Whenever another

device publishes data on any of these topics, the server sends messages

to all connected users of these topics, warning them of newly available

data. The MQTT protocol works on embedded devices and mobile

29. Models for IoT-based devices and technologies for data processing and transfer

446

platforms at the same time being connecting to scalable web servers

over wired or wireless networks. It is useful for connections with

remote embedded systems where network bandwidth is low or the

connection is unpredictable. It is also ideal for mobile applications that

work with small amounts of transmitted information. For example, the

high performance and reliability of the MQTT protocol are

demonstrated by Facebook Messenger, Amazon IoT (AWS-IoT), IBM

Node-Red and others that use it to serve millions of people every day

[3].

2. CoAP.

Constrained application protocol is the Internet Protocol for

restricted devices (defined in RFC 7228). The CoAP is intended for

application between devices in the same limited network, between

devices and shared nodes on the Internet, and between devices on

various constrained networks which the Internet connects to. This is an

application layer protocol that is designed for network restricted IoT

devices, such as nodes of network sensors. It can work on most devices

that support User Datagram Protocol (UDP) or an analog of UDP. It

implements the architectural style of Representational State Transfer

(REST), which can be transparently mapped to HyperText Transfer

Protocol (HTTP). However, CoAP also provides features that go

beyond HTTP, such as national push notifications and group

communication. Unlike MQTT, CoAP does not require the work of a

broker server. On the implementation side, the Eclipse Californium

project covers the implementation of the Java CoAP protocol, including

Datagram Transport Layer Security (DTLS) security support. There is

also a MicroCoAP project that provides the implementation of the

CoAP for Arduino [2, 9].

3. Bluetooth and Bluetooth Low Energy (BLE).

The Bluetooth protocol provides wireless communication through

the radio frequency (2.4 GHz spectrum in the ISM band) using the

standard that was originally used to exchange files between mobile

phones. Bluetooth, as a rule, is divided into two categories [2].

Bluetooth Classic is designed to work on high-speed IoT devices,

for example, streaming audio data wirelessly [3].

Bluetooth Smart or Low Energy/BLE is designed for low-battery

IoT devices that carry small volumes of packet data.

29. Models for IoT-based devices and technologies for data processing and transfer

447

Currently, Bluetooth should be understood as a complex network

protocol developed specifically for the IoT. It provides a stable

connection with a low power consumption. An obvious example is a

connection between Bluetooth and BLE smartphone and fitness tracker.

With a constant connection and a small amount of battery tracker,

wireless data transmission is at a high level [10, 11].

So, today there are many different protocols and industry standards

for connecting IoT devices, such as the above and Wi-Fi WebSockets,

ZigBee, LoRA, Simple RF, Extensible Messaging and Presence

Protocol (XMPP), Radio Frequency IDentification (RFID), Near Field

Communication (NFC), etc. Nevertheless, the choice must be based on

the requirements of the IoT system. For example, the MQTT protocol is

extremely powerful and will be effective in developing corporate IoT

systems. In the case of CoAP, a developer can create their own limited

network environment and transfer information to the Internet through a

proxy server. If the system does not provide Internet connection or

large volumes of data transmitted, then Bluetooth Low Energy might be

a better choice [12].

29.2 Technologies for data processing in IoT-based systems

29.2.1 Technologies for data collection and analysis from IoT

devices

Data transmission (data exchange, digital transmission, digital

communication) is a physical process of data transfer (digital bit

stream) in the form of signals from point to point or from point to

multiple points. As a rule, this is done by means of telecommunication

through the data transmission channel, for further collection and

processing by means of computer facilities [2, 3].

Data-capturing Device is a physical device that has read/write

functions and the ability to interact with physical things. The interaction

may be carried out indirectly by means of data transfer devices or

directly by data carriers connected to physical objects. A general

purpose device has built-in processing and communication capabilities

and can exchange data using wired or wireless technologies [1].

The unique aspect of IoT, compared to other network systems, is

obviously the presence of a plurality of physical things and devices

29. Models for IoT-based devices and technologies for data processing and transfer

448

other than computing devices and data processing devices. Fig. 29.7,

adapted to the recommendations of Y.2060, depicts the types of devices

in the ITU-T model. The model considers the IoT as a network of

devices closely related to things. Sensory and actuating devices interact

with physical things in the environment. Data acquisition devices read

or write data on physical things by interacting with data transfer devices

or data carriers [1].

Fig. 29.7 – Model for collecting and processing data in IoT networks

Recommendation Y.2060 states that technologies used to interact

between data acquisition devices and data transfer devices or data carriers

include radio frequency, infrared, optical and galvanic innervation [2, 12]:

 RFID;

 infra-red labels used for military purposes, medical and other

environments where you need to track the location and movement of

personnel. It also reflects the infrared labels (stripes) on the military form,

which work with the help of batteries and emit identification information.

Remote controls used at home or in other environments for controlling

electronic devices can also be easily integrated into the IoT;

29. Models for IoT-based devices and technologies for data processing and transfer

449

 barcodes and Quick Response (QR) codes can serve as examples

of optical data storage media;

 an example of galvanic innervation can be medical implants that

use electrically conductive properties of the human body [9]. In the course

of communication between the implant and the surface of the body, the

galvanic pair transmits signals from the implant to the electrodes. This

circuit requires very little energy, which reduces the size and complexity of

the implanted device.

The last type of device in Fig. 29.7 is general purpose devices. They

have the ability to process data. A good example is the "smart home"

technology, which can integrate virtually any device in the IoT network for

centralized or remote control [12, 13].

Within the computer or the communication device, the distances

between the different units are too short. Thus, the normal practice is to

transfer data between subdivisions using a separate wire. There are parallel

and serial (consecutive) data transfer modes. The parallel operation mode

results in minimal delays when transmitting each signal. The graphic

representation of parallel transmission can be seen in Fig. 29.8. In the case

of a parallel transmission, all data bits are transmitted simultaneously to

separate lines of communication n lines are used to transmit n bits. Thus,

every bit has its own line. All n bits of the same group are transmitted with

each clock pulse from one device to another, that is, several bits are sent

with each clock pulse. A parallel transmission is used for short-term

communication. As shown in Fig. 29.8, for the transmission of 8-bit data

from the sender to the receiver, there are used eight separate channels [2,3].

Fig. 29.8 – Parallel data transmission

29. Models for IoT-based devices and technologies for data processing and transfer

450

The advantage of parallel transmission is the fast way of data

transmission since several bits are transmitted simultaneously with one

clock pulse [2].

A disadvantage is an expensive way of transmitting data since it

requires n rows to transmit n bits simultaneously [2, 6].

During the consecutive data transfer between two separate devices,

especially if the distance is more than a few kilometers, for cost

reasons, it is more economical to use one pair of lines. Data is

transmitted as one bit at a time, using a fixed time interval for each bit

[6]. In a serial transmission, different bits of data are transmitted

serially one after another. To transmit data from the sender to the

receiver, only one communication line is required, not n lines. Thus all

bits of data are transmitted through one line in series. Only one bit is

sent in a single-pulse serial transmission. As shown in Figure 29.9, we

assume that the 8-bit data 11001010 must be sent from source to

receiver. Then the smallest significant bit (LSB) 0 will be passed rather

to the first, then the other bits. The most significant bit (MSB), i.e. 1,

will be transmitted at the end through one link line. The internal

circuitry of the computer transmits data in parallel. Therefore, in order

to convert these parallel data into consecutive data, there are used

converter devices. These devices convert the parallel data into

consecutive data on the sender's side so that they can be transmitted

through one line. On the receiver side, the received consecutive data are

again converted into a parallel form [1].

Fig. 29.9 – Consecutive data transmission

29. Models for IoT-based devices and technologies for data processing and transfer

451

The advantage of a consecutive transmission is the use of a single

line of communication. It reduces the cost of the transmission line

compared to the parallel transmission.

Among the shortcomings of the successive transfer there are the

following ones [6]:

– the use of conversion devices at the initial and final stages can

lead to an increase in the total cost of transmission;

– this method works slower in comparison to parallel

transmission since bits are serially transmitted one after another.

29.2.2 Technologies for data processing

Currently, there is a small amount of data processing technology

from IoT devices. All of them are one way or another integrated into

specific data processing devices or platforms.

Let's consider several well-known data processing technologies.

IBM's Watson Internet of Things is one of the most prominent

technologies for cognitive processing of data from IoT devices.

Developed by scientists, IBM technology of the Internet of things has

unique capabilities in the field of machine learning and automatic

processing of data coming from several sensory devices. It enables

complex analysis and provides an appropriate automatic response in

accordance with the aims of the object [14]. The Japanese corporation,

Panasonic has announced their plans to use Watson's cloud-based IoT

platform and is now examining options for integrating its sensors and

smart devices with this platform. The connection of the video

surveillance system, glass breakdown sensors, windows and doors

opening, motion, etc. to IBM's cognitive computing system will

optimize and make smart Panasonic homes even more intelligent. For

example, the security system will not react if neighboring children get

into the courtyard to fetch their own ball, while it will still be effective

in case of an intruder penetration [15].

North Star BlueScope Steel, a manufacturer of rolling steel for the

construction industry, will begin using the Watson Internet of Things

cognitive technology and native devices to create innovative solutions

to protect workers in extreme conditions. Employees working in

difficult industrial conditions are exposed to various risks on a daily

basis: thermal, chemical and toxic influences, open fire, mechanical

29. Models for IoT-based devices and technologies for data processing and transfer

452

contact with industrial equipment. In 2017, there were registered almost

3 million industrial injuries. At the same time, there are no practical

ways to check the mandatory safety and personal protective equipment

used in potentially hazardous conditions. The use of native devices that

collect information about different metrics, combined with Watson

processing, allows you to transfer relevant information in real time to

the company's management when potentially dangerous conditions

arise. For example, a company may receive a combination of body

temperature, accelerated pulse rate and real estate within minutes,

which may indicate a heat shock with a possible lethal outcome. The

same indicators may seem insignificant if taken separately [3].

In many IoT-systems, a distributed network of IoT devices can

generate large volumes of data. For example, oil fields and refineries

can generate up to terabytes of data daily. An airplane can generate

several terabytes of data per hour. Instead of storing all of these data

permanently (or at least for a long time) in a centralized repository

accessible to IoT applications, it is often more appropriate to perform

most of the data processing closer to IoT devices. Therefore, the task of

the level of peripheral computing (edge computing level) is the

transformation of network data streams into information, suitable for

storage and higher-level processing. Processing elements at this level

can deal with large volumes of data and carry out data conversion

operations, which result in a much lower volume of storage. Published

Cisco document on the IWF model [1, 3] contains the following

examples of operations (processing) at the level of peripheral

computing:

 analysis of data on criteria of belonging to processing at a

higher level;

 reformatting data for the same high-level processing;

 processing of cryptographic data with an additional context;

 reduction and/or summarization of data for further high-level

processing.

The processing elements at this level correspond to general

purpose devices in the ITU-T model (Fig. 29.7). As a rule, they are

physically deployed on the edge of the IoT network, that is, next to

sensors and other data generation devices. Thus, part of the basic

29. Models for IoT-based devices and technologies for data processing and transfer

453

processing of large volumes of data is removed from the application

programs of IoT which are located centrally.

Processing at the peripheral level is sometimes called fuzzy

calculations (Fog Computing). Fuzzy calculations and fuzzy services

are expected to become an excellent feature of the IoT. Fuzzy

calculations represent a trend in modern network technologies, the

opposite of cloud computing. In cloud computing, a large amount of

centralized storage and data storage resources is available to distributed

users through cloud-based network structures for a relatively small

number of users. In the fog computing, a large number of individual

intellectual objects communicate with fuzzy network structures that

perform computations and store resources, along with peripherals in the

IoT. Fog Computing solves the problems that have appeared as a result

of the operation of thousands or millions of "smart" devices, including

security, privacy, network constraints, and delays. The term "Fog

Computing" is chosen because the fog spreads over the earth, while the

clouds are high in the sky [2, 3, 6].

29.2.3 Methods of management and forecasting

Forecasting is the process of making predictions of the future

based on past and present data and most commonly by analysis of

trends. A commonplace example might be estimation of some variable

of interest at some specified future date. Prediction is a similar, but

more general term. Both might refer to formal statistical methods

employing time series, cross-sectional or longitudinal data, or

alternatively to less formal judgmental methods. Usage can differ

between areas of application: for example, in hydrology the terms

"forecast" and "forecasting" are sometimes reserved for estimates of

values at certain specific future times, while the term "prediction" is

used for more general estimates, such as the number of times floods

will occur over a long period [1].

Qualitative forecasting techniques are subjective, based on the

opinion and judgment of consumers and experts; they are appropriate

when past data are not available. They are usually applied to

intermediate- or long-range decisions. Examples of qualitative

forecasting methods are informed opinion and judgment, the Delphi

method, market research, and historical life-cycle analogy [2].

29. Models for IoT-based devices and technologies for data processing and transfer

454

Quantitative forecasting models are used to forecast future data as

a function of past data. They are appropriate to use when past numerical

data is available and when it is reasonable to assume that some of the

patterns in the data are expected to continue into the future. These

methods are usually applied to short- or intermediate-range decisions.

Examples of quantitative forecasting methods are last period demand,

simple and weighted N-Period moving averages, simple exponential

smoothing, poisson process model based forecasting [2] and

multiplicative seasonal indexes. Previous research shows that different

methods may lead to different level of forecasting accuracy. For

example, GMDH neural network was found to have better forecasting

performance than the classical forecasting algorithms such as Single

Exponential Smooth, Double Exponential Smooth, autoregressive

integrated moving average (ARIMA) and back-propagation neural

network [3].

Limitations pose barriers beyond which forecasting methods

cannot reliably predict. Many events and values cannot be forecast

reliably. Events such as the roll of a die or the results of the lottery

cannot be forecast because they are random events and there is no

significant relationship in the data. When the factors that lead to what is

being forecast are not known or well understood such as in stock and

foreign exchange markets forecasts are often inaccurate or wrong, as

there is not enough data about everything that affects these markets for

the forecasts to be reliable. In addition, the outcomes of the forecasts of

these markets change the behavior of those involved in the market

further reducing forecast accuracy [6].

Uprise of IoT have revolutionized major industries that

includes industries, agriculture and healthcare and have expanded its

scope not only to build smart cities but also to accurate forecasting of

weather. Weather forecasting itself has its direct or indirect influence

on various sectors of economy like Energy, transportation and other

business and thereby, making this forecasting as a key element in an

economy’s growth. Remote sensing technology have opened the gates

for real time analysis of weather data and have transformed the way

that was used to collect and analyse weather data and build a strong

database for reliable weather forecasts [3].

29. Models for IoT-based devices and technologies for data processing and transfer

455

Let’s discuss few means by which atmospheric data is collected.

IoT enabled weather systems are designed to collect data from various

vehicles on the road, vehicles moving on the road will wirelessly

communicate the weather and road condition data that is inclusive of air

temperature, barometric pressure, visibility or light, motion and other

data needed. This data helps to build more accurate forecast and

provide flexible real time monitoring at different time horizon. Sensors

are installed on windshields, wipers and tyres of car. These sensors in

integration with IoT help in collecting weather data which is further

pooled in cloud for analysis [3].

Companies like IBM, Rainmachine and others are working

towards expansion of IoT enabled weather forecasting [2].

As mentioned earlier, accuracy of weather forecasting directly or

indirectly influences other sectors of economy to a great extent, it thus

raises the need of a system that facilitates higher accuracy of real time

monitoring and future weather prediction. Below you can have a look at

key sectors that are benefited with IoT weather forecasting technology.

Agricultural process i.e. preparation of soil, sowing, irrigation,

harvesting and storage of crops is directly dependent on weather

condition leaving farmers vulnerable to weather hazards. Development

and expansion of IoT technology for weather forecasting will deliver

vital weather prediction to farmers and accordingly farmers may use the

intelligence to improve their crop fertility and cost along with taking

essential steps to diversify weather hazards. Timely and accurate

delivery of weather forecast will ensure higher productivity and lower

the risk of weather hazard. We are well aware about uncertainty of

unpleasant weather and risk factor attached to it in transportation. On

successful installation of remote sensors on every vehicle moving on

road. It would communicate every minor detail for analysis of weather

change allowing the real time weather monitoring and forecasting

report to cover even minute details like temperature, fog, road

condition, light, flood, stormy and other condition that would add up to

reliability and accuracy of the report [2, 6].

29. Models for IoT-based devices and technologies for data processing and transfer

456

29.3 Protocols and standards for data transfer between IoT-

based devices

29.3.1 Protocols for data transfer

Protocols for the exchange (transmission) of data between IoT

devices are divided into groups depending on the area of the network

on which they are used. There are the following areas: sensor node

(Data Disturbing Service (DDS) protocol), sensor node-server (CoAP,

MQTT, XMPP, Simple (or Streaming) Text Oriented Message Protocol

(STOMP) protocols), server-server (Advanced Message Queuing

Protocol (AMQP)). Consider some data transfer protocols between IoT

devices over the Internet [1].

The DDS protocol implements a publication-subscription template

for sending and receiving data, events, and commands among end

nodes. Sender nodes create a "topic" (for example, information about

temperature, location, pressure) and publish templates. DDS delivers

created templates to nodes interested in relevant topics. UDP is used as

a transport protocol. Also, DDS allows one to manage quality of service

(QoS) parameters [2].

The CoAP protocol from the user's perspective is similar to the

HTTP protocol but has a small header size that is suitable for networks

with restricted capabilities. It uses client-server architecture and is

suitable for conveying the state of the site to a server (GET, PUT,

HEAD, POST, DELETE, CONNECT). As a transport protocol, UDP is

used [3].

The XMPP protocol has long been used on the Internet for real-

time messaging. The eXtensible Markup Language (XML) format is

suitable for usage in IoT networks. It works on the publisher-subscriber

and client-server architecture. It is also used to address devices in small

networks (addressing the look "name@domain.com") [2].

The MQTT protocol collects data from a plurality of nodes and

transmits it to the server. It is based on a publisher-subscriber model

using an intermediate server-broker. Transmission Control Protocol

(TCP) is used as a transport protocol. On the basis of MQTT, there was

created a specialized protocol MQTT-SN for sensor networks [3].

Routing protocols. This section there are described some standard

and non-standard protocols which are used to route data to IoT

29. Models for IoT-based devices and technologies for data processing and transfer

457

applications. It should be noted that there is a conditional division of

the network layer into two sublevels: a routing layer that processes

packet transfers from source to destination, as well as an encapsulation

layer that generates packets [6].
Routing over Low Power and Lossy Networks (RPL) is a protocol

that can support various data transfer protocols. It creates a Destination

Oriented Directed Acyclic Graph (DODAG) that has one route from

each end node to the base node. First, each node sends a message about

the information model of the IoT device, representing the base node.

This message is distributed over the network, and the entire DODAG

graph is being gradually built. During the broadcast, the node transmits

to all information about its location on the network (DAO). This DAO

message is actual for the base node that makes a decision on the place

of departure, depending on the destination. When a new node wants to

connect to a network, it sends a request and the base node answers with

a confirmation message. The RPL nodes may be without states, which

is the most common practice, or they can be with states [2].

The CORPL (cognitive RPL) protocol is positioned as an

extension of the RPL developed for cognitive networks and uses the

generation of the DODAG topology, but with two new modifications.

CORPL uses conditional sending for the packet forwarding by selecting

multiple conveyors (a set of conveyors) and coordinates between the

nodes to select the next best step for forwarding the packet. DODAG is

built in the same way as in RPL [14].

Common Address Redundancy Protocol (CARP) is a distributed

routing protocol designed for underwater communications. It can be

used for IoT because of its light packs. It takes into account the quality

of communication, which is calculated on the basis of a successful

transfer of data collected from neighboring sensors. There are two

scenarios: network initialization and data transfer. In the network

initialization, the HELLO packet is transmitted from the host to all

other nodes in the network. During data redirection, the packet is

transmitted from the sensor to the host in hop-by-hop-fashion mode.

Each next step is determined by itself. The main problem of CARP is

that it does not support the multiple uses of previously collected data.

The improvement of CARP was done in E-CARP, allowing the host to

29. Models for IoT-based devices and technologies for data processing and transfer

458

store previously received data. When new data is needed, E-CARP

sends a ping packet that matches data from sensor nodes [15].

29.3.2 Standards for data transfer

Currently, there are several standards for data transmission in IoT

networks. Let's examine some of them in detail.

The Wireless USB Standard is a wireless data standard developed

by the Wireless USB Promoter Group. In September 2010, the Wireless

USB 1.1 specification was completed. It involves increasing data rates,

as well as the support of higher frequencies - up to 6 GHz and above. In

the development, much attention was paid to improving energy

efficiency. Devices made in accordance with specification 1.1, use less

power in idle mode. Wireless USB 1.1 supports NFC technology,

which simplifies the configuration and operation of Wireless USB

devices.

Wireless USB Standard is intended to become a replacement for

traditional USB drives. Typical devices include a keyboard, a mouse, a

camera, a printer, external drives, etc. Wireless USB can also be used to

easily shared usage of printers that do not have a standard network

interface or are not connected to a print server [16-18].

The transmission parameters correspond to the standard USB

version 2.0, but the bandwidth depends on the distance between the

devices. At a distance of up to 3 meters, the data rate can theoretically

reach 480 Mbps. At a distance of 10 meters - only up to 110Mbps

(under optimum conditions). Wireless USB is designed for operation in

the frequency range from 3.1 GHz to 10.6 GHz. Data transmission is

encrypted with the help of AES-128 / CCM [6].

The Narrow Band Internet of Things Standard (NB-IoT) is a

mobile communication standard for telemetry devices with low

volumes of data exchange. It was designed by the 3GPP consortium in

the framework of working on the standards of mobile networks of the

new generation. The first working version of the specification was

presented in June 2016. It was made for connecting a wide range of

stand-alone devices to a digital communications network, for example,

medical sensors, meters of resources consumption, devices of a smart

home, etc. [12]. NB-IoT is one of the three IoT standards developed by

3GPP for mobile communications: eMTC (enhanced machine-type

29. Models for IoT-based devices and technologies for data processing and transfer

459

communication), NB-IoT, and EC-GSM-IoT [2]. The eMTC standard

has the highest bandwidth and is based on LTE equipment. The NB-IoT

standard can be used both on LTE mobile devices and separately,

including GSM. The EC-GSM-IoT standard provides the lowest

bandwidth and extends beyond the GSM network. Among the benefits

of NB-IoT there are the following ones [17]:

 flexible power management of devices (up to 10 years in a

network of a battery with the capacity of 5 W*h);

 huge capacity of the network (hundreds of thousands of

connected IoT devices per base station);

 low cost of IoT devices;

 optimized for increasing the sensitivity of signal modulation.

A comparative analysis of some data transmission standards is

given in Table 29.1.

Table 29.1 – Comparative analysis of LTE Cat 0, eMTC, NB-IoT,

EC-GSM-IoT data transfer standards

 LTE Cat 0 eMTC NB-IoT EC-GSM-IoT

Downlink Peak

Rate
1 Mbit/s 1 Mbit/s 250 kbit/s

474 kbit/s or

2 Mbit/s

Uplink Peak Rate 1 Mbit/s 1 Mbit/s
250 kbit/s or

20 kbit/s

474 kbit/s or

2 Mbit/s

Latency not deployed
10ms-

15ms
1.6s-10s 700ms-2s

Number of

Antennas
1 1 1 1-2

Duplex Mode
Full or Half

Duplex

Full or

Half

Duplex

Half Duplex Half Duplex

Device Receive

Bandwidth

1.4 –

20 MHz
1.4 MHz 180 kHz 200 kHz

Receiver Chains 1 1 1 1-2

Device Transmit

Power
23 dBm

20/23

dBm
20/23 dBm 23/33 dBm

There is envisaged a great popularity of IoT devices with the

ability to use mobile communication. In this case, the cost and

maintenance costs become critical. One way to save money is not to

29. Models for IoT-based devices and technologies for data processing and transfer

460

install a physical SIM card. The GSMA consortium in 2016 adopted the

specification of Embedded SIM (eSIM) / Remote SIM Provisioning

(RSP) for that purpose. The eSIM standard allows one to integrate the

SIM card functional into the electronics of the modem, and the RSP

describes the infrastructure and algorithms for interoperating trusted

emission centers of SIM parameters, the mobile operator and the

communication service user [18].

The Low-Power Wide Area Network (LPWAN) is a standard

wireless low-bandwidth data transmission technology developed for

distributed telemetry, inter-engineer interconnection networks, and IoT.

LPWAN is one of the wireless technologies that provides a data

collection environment for various equipment: detectors, meters, and

sensors [1]. The LPWAN standard focuses on IoT systems that require

guaranteed low data transmission, the ability of network IoT devices to

last long using standalone power sources, and a large area coverage of

the wireless network. The main areas of application of LPWAN are

wireless sensor networks, automation of data collection on accounting

devices, industrial monitoring and control systems [3].

For wireless data transmission, the following characteristics, such

as efficiency, fault tolerance, adaptability, possibility of self-

organization, play an especially important role in the IoT. The main

interest then is Institute of Electrical and Electronics Engineers (IEEE)

802.15.4, an access control for the organization of energy efficient

personal networks, and is the basis for such protocols as ZigBee, WiFi,

Bluetooth, 6LoWPAN. IEEE 802.11 is a set of standards for

communication in the Wireless Local Area Network (WLAN) of the

frequency ranges 2.4, 3.6 and 5 GHz. They have been developed and

supported by the LAN / MAN (IEEE 802) Standards Committee of the

IEEE, which determine the interaction of wireless computer networks.

The basic version of IEEE 802.11 (2007) has undergone the additions.

These standards provide the basics of wireless network products that

use the Wi-Fi brand. Let's consider some of them [2, 7]:

 IEEE 802.11а is a wireless LAN standard based on wireless

data transmission in the 5 GHz range. The range is divided into three

non-overlapping channels. The maximum data transfer rate is 54 Mbps,

with speeds of 48, 36, 24, 18, 12, 9 and 6 Mbps also available;

29. Models for IoT-based devices and technologies for data processing and transfer

461

 IEEE 802.11b+ is an upgraded version of the 802.11b standard

that provides increased data rates. It differs from the original version of

the Packet Binary Convolutional Coding (PBCC), doubling the

maximum speed (up to 22 Mbit/s). Also announced solutions to

productivity, increased to 44 Mbps;

 IEEE 802.11g is a WLAN standard based on 2.4 GHz wireless

data transmission. In order to increase the data rate at a channel width

similar to 802.11b, an Orthogonal frequency-division multiplexing

(OFDM) method, or a PBCC method, is used;

 IEEE 802.11е (QoS) is an additional standard that ensures a

guaranteed quality of data exchange by rearranging the priorities of

different packages; it is required for such stream services as Voice over

Internet Protocol (VoIP) or Internet Protocol Television (IPTV);

 IEEE 802.11n is a modern wireless LAN standard based on

wireless 2.4 GHz data transmission. The 802.11n standard significantly

exceeds the previous 802.11b and 802.11g standards by providing data

rates at Fast Ethernet level. The main difference from the previous

versions is the addition of the MIMO protocol (multiple-input-multiple-

output) to the physical layer (PHY). The theoretical speed can be 150

Mbps;

 IEEE 802.11ac is a new standard for wireless local area Wi-Fi

networks at frequencies of 5-6 GHz. If both IoT devices support this

technology, data transfer speed may be greater than 1 Gbit/s (up to 6

Gbit/s 8x MU-MIMO). The standard requires up to 8 MU-MIMO

antennas and 80 or 160 MHz channel extensions;

 IEEE 802.11аx is a follower of the 802.11ac standard. The

operating ranges of the standard are 5 GHz and 2.4 GHz. The standard

is still being developed and has the goal of providing a bandwidth of 10

Gbit/s.

29.3.3 Cybersecurity of IoT-based devices

The development of secure IoT-systems includes several levels

that combine important IoT-security architectures at four different

levels: device level, communication layer, cloud level, and life-cycle

management level [19-21].

The device level refers to the hardware level of the IoT system, that

is, the physical product. The ODMs and OEMs of IoT devices

29. Models for IoT-based devices and technologies for data processing and transfer

462

increasingly integrate security features into their hardware and software

of the device to enhance security directly at the IoT device level. Some

manufacturers introduce trusted platform modules (TPMs) that act as a

guarantor of trust, protecting confidential information and credentials

(without releasing encryption keys on the chip). Even physical

protection (for example, a full metal shield that covers all internal

circuits) can be used to protect against interference.

The level of communication refers to the technologies of

connection of IoT devices in the IoT-network, that is, the environment

in which data is reliably transmitted/received. Confidential data is

passed through physical level (e.g., WiFi, 802.15.4 or Ethernet),

network level (eg IPv6, Modbus, or OPC-UA) or application level (eg

MQTT, CoAP or web connectors). Unsafe communication channels

can be susceptible to intruders, such as "men-in-the-middle". Data-

oriented IoT-security solutions provide secure encryption of data during

transmission. Even if they are intercepted, they will be useless for

everyone, except for users (ie, people, devices, systems or applications)

that have the correct encryption key. Firewalls and intrusion prevention

systems are designed to analyze specific traffic flows (such as non-IoT

protocols) which are embedded in IoT devices. They are increasingly

used to identify unwanted intrusions and prevent harmful connection at

the communications level [20].

The cloud level refers to software support for the IoT solution,

which means that data coming from devices is analyzed and interpreted

to generate statistics and perform actions. Security has always been one

of the main topics for discussion when assessing the risk of using cloud

and built-in solutions. Cloud providers are expected to provide secure

and efficient cloud services by default, and protection from severe data

breaches or solving problems with idle mode are becoming normal

[21].

Important cyber security features in IoT [2]:

 the information stored in the cloud must be encrypted in order

to avoid attack;

 checking the integrity of other cloud platforms or third-party

programs that are connected with your cloud services;

 digital certificates for authentication;

29. Models for IoT-based devices and technologies for data processing and transfer

463

 monitoring activity for tracking, registering and detecting

suspicious activity;

 IoT devices and applications require regular security patches to

protect against new threats.

Intruders can intercept or change the behavior of smart Home IoT

devices in many ways. Some methods require physical access to the

device, which makes the attack more difficult to carry. Other attacks

can be done via the Internet from a remote location. The following is a

different attack level scenario based on the access level.

An attacker who has access to a local home network may perform

various attacks on the IoT device. There are, as a rule, two common

access modes: through the cloud and direct connection. Depending on

the function, the IoT device can use any of these methods to receive

commands [19].

In the case of a cloud attack, a smart home device is constantly

connected to the cloud. The device checks the cloud server to see if

there are any commands to execute and then downloads its current

state. In this case, the attacker will have to execute the Man in the

middle (MITM) attack. In order to achieve this, one needs to try to

redirect network traffic with network-level attacks, for example by

changing Address Resolution Protocol (ARP) or Domain Name System

(DNS) settings. A fake certificate can help attackers intercept HTTPS

connections. Unfortunately, some IoT devices do not check if the

certificate is trusted and belongs to the vendor, they only confirm the

connection through HTTPS. Additionally, most devices do not perform

mutual SSL authentication, and completely ignore certificate

cancellation lists, allowing an attacker to use keys that were received

due to data breaches [6].

Some IoT devices use direct connections to communicate with a

hub or application on the same network. For example, a mobile

application can scan a local area network for new devices and find them

by sensing each IP address for a particular port. Another way is to use

the Simple Service Discovery Protocol / Universal Plug and Play

(SSDP / UPnP) to detect devices. This means that an attacker can do

the same thing to find the right device. The most common mistake is

the use of unencrypted network communications. Lack of encryption

raises serious data privacy issues. Devices can transmit personal data,

29. Models for IoT-based devices and technologies for data processing and transfer

464

registration data or tokens in plain text, allowing the intruder to

intercept them [3].

The most common way for users to interact with IoT devices is to

use a web browser or smartphone application. More powerful devices

have a small web server and allow a user to apply a web interface to

send commands. Other devices offer their own program interface (API)

which the user can interact with. If a user wants to control devices

remotely when they are not at home, they should be able to open the

incoming port on the router. This can be done using the UPnP request

or can be manually fulfilled by a user [21].

A smart home iT device can include cloud-based services,

depending on the device category. Other cloud systems allow remote

control of IoT devices, such as bulbs or boilers. Some vendors even

force a user to connect to their server cloud system and do not allow

users to locally manage their devices. Companies either provide access

to cloud services through an application for smartphones or a web

portal where users can log in.

Most services do not block users in their accounts after several

login attempts. At the same time, some servers of cloud services do not

provide the possibility of two-factor authentication.

Malicious software installed on any IoT device which is connected

to the home network may be able to interact with smart home devices

and allow hackers to make larger-scale attacks.

For now, there have been no large-scale malware attacks on an IoT

device. In addition, malicious programs and cyber-security violations of

IoT devices attacking routers, and similar devices have been

successfully detected several times.

29.4 Work related analysis

The issues discussed above can be supplemented by an analysis of

the existing works of European partner universities of the ALIOT

project on the topic of the section [22]. Models for IoT-based devices

and technologies for data processing and transfer are considered in

different university-partners, besides University of Coimbra, Leeds

Beckett University, Consiglio Nazionale delle Recerche - Instituto di

Scienza e Technologie dell' Informazione "A.Faedo" (ISTI-CNR),

29. Models for IoT-based devices and technologies for data processing and transfer

465

Royal Institute of Technology (KTH) and Newcastle University. So,

let’s consider the following projects.

An IoT application, such as real-time flood forecasting [6] and

warning, requires the integration of machine and social sensors data to

provide complementary and corroborative information. This aggregate

data can be semantically tagged to generate and distribute events of

interest (to particular subscribers).

Also important it is to consider the IEEE 802.11 medium access

control protocol uses the distributed coordination function that supports

asynchronous data transfer and an optional point coordination function

that supports connection-oriented time-bounded data transfer [7].

Cooperative communication has been shown as an effective way to

exploit spatial diversity to improve the quality of wireless links. The

key feature of cooperative transmission is to encourage single-antenna

devices to share their antennas cooperatively such that a virtual and

distributed antenna array can be constructed, and, as a result, reception

reliability can be improved and power consumption can be reduced

significantly [9]. Due to broadcast transmission and unattended nature,

and hostile environments a variety of denial of service (DoS) attacks

are possible in both Wireless Sensor Networks (WSNs) and ad-hoc

networks. Authors developed a formal framework which can

automatically verify different wireless routing protocols against DoS

attacks exhaustively [19]. Also this paper [12] presents some of the

main application requirements for IoT, characterizing architecture, QoS

features, security mechanisms, discovery service resources and web

integration options and the protocols that can be used to provide them

(e.g. CoAP, XMPP, DDS, MQTT-SN, AMQP). As examples of lower-

level requirements and protocols, several wireless network

characteristics (e.g. ZigBee, Z-Wave, BLE, LoRaWAN, SigFox, IEEE

802.11af, NB-IoT) are presented [8, 13]. WSNs leverage battery-

powered embedded devices to sense from and act on the environment.

Their characteristics are at odds with the lifetime requirements in

monitoring of civil structures. In this paper [17] authors briefly describe

the challenges at stake and how to address them, drawing from recent

literature and our own real-world experience [18].

This paper [20] presents a quantitative architecture analysis

method for the study of architectures of wide-area monitoring and

29. Models for IoT-based devices and technologies for data processing and transfer

466

control systems focusing primarily on the interoperability and

cybersecurity aspects. Also this paper [21] presents a distributed

intrusion detection system (DIDS) for supervisory control and data

acquisition (SCADA) industrial control systems, which was developed

for the CockpitCI project.

In this paper [4] an approach to deal with these issues is presented.

It makes use of the device description framework Eclipse Vorto. Using

Vorto's capabilities to generally describe devices and interfaces and

generating code, a proof of concept has been implemented where a

smart home platform is connected to an electric vehicle in order to

integrate the vehicle as part of a smart home platform. The paper

discusses the challenges, introduces the proposed concept and gives

some details on the implementation of the exemplary use case [5].

Conclusions and questions

In this section, the materials for module PCM4.2 “Models for IoT-
based devices and technologies for data processing and transfer” of

PhD course “Development and implementation of IoT-based systems”

are presented. They can be used for preparation to lectures and self-

learning for lecturers, PhD-students, IoT developers, etc.

Recently, the direction associated with the development and

implementation of IoT devices has become very popular and effective.

This gave rise to such areas as neural network technologies, cloud and

fog computing, control systems, computer vision, etc.

This chapter discusses the basic principles of constructing

information models of IoT-based devices and tools for their creation, in

particular Eclipse Vorto [5]. Also analyzed network communication

protocols for IoT-based devices. In addition, an important component

of the IoT network is the choice of technologies for data processing in

IoT-based systems and methods of management and forecasting. Also

considered the main protocols and standards for data transfer between

IoT-based devices. Some attention is paid to cybersecurity in IoT [21].

The considered information models, data transfer protocols and

standards, forecasting methods are widely used in all applications of the

IoT, for example, home automation, climate control, environmental

29. Models for IoT-based devices and technologies for data processing and transfer

467

monitoring, production automation, agriculture, medical applications,

smart transportation, smart traffic, etc [1-3, 6].

In order to better understand and assimilate the educational

material that is presented in this section, we invite you to answer the

following questions.

1. What is an information model?

2. What is the purpose of the instrumental tool “Eclipse Vorto”?

3. What is the advantage of “Eclipse Vorto”?

4. What is not a component of the process of creating an

information model in “Eclipse Vorto”?

5. What components are not included in the information model?

6. How the MQTT protocol is decrypted?

7. What is the frequency of data transfer by Bluetooth?

8. What does the RFID mean in the Y.2060 recommendation?

9. What is not included in the model for collecting and

processing data in IoT networks (Y.2060

recommendation)?

10. Which data transmission has its own line for each bit?

11. Which method is not a qualitative forecasting method?

12. What is the Wireless USB Standard?

13. What is the basic version of IEEE 802?

14. What is the standard still being developed and has the goal of

providing a bandwidth of 10 Gbit/s?

15. How many levels does IoT cybersecurity include?

References

1. D. Uckelmann, M. Harrison, and F. Michahelles, Architecting the

Internet of Things. Berlin: Springer-Verlag, 2011.

2. M. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke,

"Middleware for Internet of Things: A Survey," in IEEE Internet of Things

Journal, vol. 3, no. 1, 2016, pp. 70-95.

3. F. Hussain, Internet of Things: Building Blocks and Business Models.

Cham: Springer, 2017.

4. J. Laverman, D. Grewe, O. Weinmann, M. Wagner, and S. Schildt,

"Integrating Vehicular Data into Smart Home IoT Systems Using Eclipse

Vorto," IEEE 84th Vehicular Technology Conference (VTC-Fall), pp. 20-26,

September 2016.

29. Models for IoT-based devices and technologies for data processing and transfer

468

5. "Vorto Introduction," Eclipse Vorto, 2016, [online] Available:

https://www.eclipse.org/vorto/documentation/overview/introduction.html.

6. R. Ranjan, O. Rana, S. Nepal, M. Yousif, P. James, Z. Wen, S. Barr, P.

Watson, P. Jayaraman, D. Georgakopoulos, M. Villari, M. Fazio, S. Garg, R.

Buyya, L. Wang, A. Zomaya, and S. Dustdar, "The Next Grand Challenges:

Integrating the Internet of Things and Data Science," in IEEE Cloud

Computing, vol. 5, no. 3, 2018, pp. 12-26.

7. N. Natchimuthu and A. Sajeev, "A communication protocol using a

Markov type function for stations in a wireless local area network," The 8th

International Conference on Communication Systems, pp. 829-833, November

2002.

8. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.

Ayyash, "Internet of Things: A Survey on Enabling Technologies Protocols

and Applications," in IEEE Commun. Surv. Tutorials, vol. 17, iss. 4, 2015, pp.

2347-2376.

9. I. Morns, O. Hinton, A. Adams, and B. Sharif, "Protocols for sub-sea

communication networks," Conference Proceedings on MTS/IEEE Oceans

2001, pp. 2076-2082, November 2001.

10. C. Gomez and J. Paradells, "Wireless home automation networks: A

survey of architectures and technologies," in IEEE Communications Magazine,

vol. 48, no. 6, 2010, pp. 92-101.

11. Z. Sheng, K. Leung and Z. Ding, "Cooperative wireless networks: from

radio to network protocol designs," in IEEE Communications Magazine, vol.

49, no. 5, 2011, pp. 64-69.

12. L. Novelli, L. Jorge, P. Melo, and A. Koscianski, "Application

Protocols and Wireless Communication for IoT: A Simulation Case Study

Proposal," The 11th International Symposium on Communication Systems,

Networks & Digital Signal Processing (CSNDSP), pp. 372-378, July 2018.

13. F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-

Segui, and T. Watteyne, "Understanding the Limits of LoRaWAN," in IEEE

Commun. Mag, vol. 55, no. 9, 2017, pp. 34-40.

14. N. Huynh, V. Robu, D. Flynn, S. Rowland, and G. Coapes, "Design

and demonstration of a wireless sensor network platform for substation asset

management," in Open Access Proceedings Journal, vol. 1, 2017, pp. 105-108.

15. M. Gursu, M. Vilgelm, W. Kellerer, and E. Fazli, "A wireless

technology assessment for reliable communication in aircraft," IEEE

International Conference on Wireless for Space and Extreme Environments

(WiSEE), pp. 51-57, December 2015.

16. H. Ogai and B. Bhattacharya, "Experiments of Wireless Transfer

Technology for Communication," in Pipe Inspection Robots for Structural

29. Models for IoT-based devices and technologies for data processing and transfer

469

Health and Condition Monitoring. Intelligent Systems, Control and

Automation: Science and Engineering, vol. 89, 2017, pp. 61-78.

17. L. Mottola, T. Voigt, I. Gonzalez Silva, and R. Karoumi, "From the

desk to the field: Recent trends in deploying Wireless Sensor Networks for

monitoring civil structures," IEEE SENSORS Proceedings, pp. 62-65, October

2011.

18. M. Massink, D. Latella, and J. Katoen, "Model checking dependability

attributes of wireless group communication," International Conference on

Dependable Systems and Networks, pp. 711-720, June 2004.

19. K. Saghar, W. Henderson, D. Kendall, and A. Bouridane, "Applying

formal modelling to detect DoS attacks in wireless medium," The 7th

International Symposium on Communication Systems, Networks & Digital

Signal Processing, pp. 896-900, July 2010.

20. M. Chenine, J. Ullberg, L. Nordstrom, Y. Wu, and G. Ericsson, "A

Framework for Wide-Area Monitoring and Control Systems Interoperability

and Cybersecurity Analysis," in IEEE Transactions on Power Delivery, vol.

29, no. 2, 2014, pp. 633-641.

21. T. Cruz, L. Rosa, J. Proenca, L. Maglaras, M. Aubigny, L. Lev, J.

Jiang, and P. Simoes, "A Cybersecurity Detection Framework for Supervisory

Control and Data Acquisition Systems," in IEEE Transactions on Industrial

Informatics, vol. 12, no. 6, 2016, pp. 2236-2246.

22. V. Kharchenko, D. Maevsky, E. Maevskaya, C. Phillips, and L.

Vystorobska, "Employers' requirements-oriented assessment of IoT

curriculum: The projects CABRIOLET and ALIOT," 9th International

Conference on Dependable Systems, Services and Technologies (DESSERT

2018), pp. 677-681, May 2018.

30. Intelligent methods and approaches for management and learning of IoT-based systems

470

30. INTELLIGENT METHODS AND APPROACHES FOR

MANAGEMENT AND LEARNING OF IOT-BASED SYSTEMS

Prof., DrS. Yu. P. Kondratenko, Ass. Prof., Dr. G. V.

Kondratenko, Ass. Prof., Dr. Ie. V. Sidenko, Ph.D. Student M. O.

Taranov (PMBSNU)

Сontents

Abbreviations .. 471

30.1 Management systems and IoT platforms 472

30.1.1 Types and capabilities of management systems and IoT

platforms .. 472

30.1.2 Multi-criteria approach for choosing the IoT platform 475

30.1.3 Soft computing for the selection of specialized IoT platform 480

30.2 Multi-agent approach for development and management of IoT

systems .. 482

30.2.1 Types and characteristics of agents .. 483

30.2.2 Communication agents with the external environment 486

30.2.3 Data transfer techniques between agents in IoT systems 488

30.3 Methods and approaches for learning of IoT-based systems 490

30.3.1 General principles of M2M learning and self-learning systems

 ... 491

30.3.2 Technologies and applications of M2M learning 493

30.3.3 Neural networks for learning of IoT-based systems 495

30.4 Work related analysis .. 497

Conclusions and questions... 498

References ... 500

30. Intelligent methods and approaches for management and learning of IoT-based systems

471

Abbreviations

ACL – Agent Communication Language

AI – Artificial Intelligence

ANFIS – Adaptive Neuro-Fuzzy Inference System

AWS – Amazon Web Services

CUDA – Compute Unified Device Architecture

DL – Deep Learning

DM – Decision Maker

FIPA – Foundation for Intelligent Physical Agents

GPU – Graphical Processing Units

GRASP – Greedy Randomized Adaptive Search Procedure

GSA – Genetic Swarm Algorithm

IoT – Internet of Things

IT – Information Technology

KIF – Knowledge Interchange Format

KQML – Knowledge Query and Manipulation Language

LT – Linguistic Term

M2M – Machine-to-Machine

MAC – Medium Access Control

MAS – Multi-Agent System

MCDM – Multi-Criteria Decision Making

PaaS – Platform as a Service

RB – Rules Base

RL – Reinforcement Learning

SA – Simulated Annealing

30. Intelligent methods and approaches for management and learning of IoT-based systems

472

30.1 Management systems and IoT platforms

30.1.1 Types and capabilities of management systems and IoT

platforms

Internet of things (IoT) management system (software) helps

manage strategies involving the connectivity of smart devices, as well

as smart packaging, and their impact on business [1]. IoT refers to the

wireless communication between devices and their ability to send,

receive, and create data based on user activity and environmental

factors. IoT management systems help businesses monitor and take

action on the communication from and between registered devices, as

well as control the devices from a remote interface on a desktop or

mobile device when necessary. These systems log and store data from

connected smart devices that provide real-time insights to help

businesses uncover trends and become more efficient. IT teams within

various organizations use IoT software to centralize activity and

analytics related to a smart device network, receive alerts when

performance is interrupted, and export relevant information to other IT

infrastructure or analytics programs [1].

To qualify for inclusion in the IoT management category, a system

must:

 sync with and monitor the activity of smart devices;

 provide tools for controlling, updating, and retrieving data from

synced devices;

 allow actions to be taken based on data received from devices;

 provide dashboards and analytics for devices.

IoT management systems (software) are often understood as IoT

platforms [2]. Let's consider in more detail the main types and

capabilities of the IoT-platforms.

The IoT describes a network of interconnected smart devices,

which are able to communicate with each other for a certain goal. But

how easy is the process of realization which IoT platform is right for

you? The market for IoT platforms is rapidly evolving. With an ever-

increasing number of available platforms to choose from, the authors

decided it would be helpful to lay out their features and capabilities for

easy comparison using different methods of multi-criteria decision

making [1, 3].

30. Intelligent methods and approaches for management and learning of IoT-based systems

473

The development of the market of services and opportunities for

information technologies leads to the emergence of the IoT concept.

The IoT principle implies the interaction of familiar (for us in everyday

life) things with the help of high-speed computer networks. In addition,

IoT is a closer integration of physical devices and people among

themselves to achieve specific goals. The desire of users to feel

themselves in the role of IoT systems developers has pushed some

companies to develop the special programmable platforms (IoT

platforms). Such platforms allow coping with various tasks in the field

of communications, information safety during data transmission,

visualization of IoT systems performance, etc. [2, 3].

First of all, it is proposed to consider the possibilities (criteria)

which have modern platforms.

Device management is one of the most important criteria expected

from any IoT platform. The IoT platform should maintain a list of

devices connected to it and track their operation status; it should be able

to handle configuration, firmware (or any other software) updates and

provide device-level error reporting and error handling. At the end of

the day, users of the devices should be able to get individual device

level statistics [1].

Integration level is another important criterion expected from an

IoT platform [2]. The API should provide access to the important

operations and data that needs to be exposed from the IoT platform.

The level of safety and reliability measures required to operate an

IoT platform is much higher than general software applications and

services. Millions of devices being connected to an IoT platform means

that we need to anticipate a proportional number of vulnerabilities.

Generally, the network connection between the IoT devices and the IoT

platform would need to be encrypted with a strong encryption

mechanism [1, 3, 4].

Another important criterion which needs attention is the types of

protocols for data collection used for data communication between the

components of an IoT platform. An IoT platform may need to be scaled

to millions or even billions of devices (nodes). Lightweight

communication protocols should be used to enable low energy use as

well as low network bandwidth functionality [2, 4, 5].

Variety of data analytics. The data collected from the sensors

connected to an IoT platform needs to be analyzed in an intelligent

30. Intelligent methods and approaches for management and learning of IoT-based systems

474

manner in order to obtain meaningful insights. There are four main

types of analytics which can be conducted on IoT data: real-time, batch,

predictive, and interactive analytics [3, 5].

Visualization enables humans to see patterns and observe trends

from visualization dashboards where data is vividly portrayed through

line-, stacked-, or pie charts, 2D- or even 3D-models [1, 3, 5].

Database functionality. Scalable storage of device data brings the

requirements for hybrid cloud-based databases to a new level in terms

of data volume, variety, velocity, and veracity. Requirements for this

criterion is an attempt to restore order in the processing and transfer of

data from, for example, different platforms or even to other information

systems [4, 5].

Consider some of the well-known platforms according to the main

features and possibilities.

Amazon Web Services (AWS) IoT Platform. According to Amazon,

their IoT platform will make it a lot easier for developers to connect

sensors for multiple applications ranging from automobiles to turbines

to smart home light bulbs [2]. The main features of AWS IoT platform

are the registry for recognizing devices; software development kit for

devices; device shadows; secure device gateway; rules engine for

inbound message evaluation [4].

Kaa IoT Platform. Kaa is provided with open source code, which

makes it easy to integrate into projects with "smart house" technology.

This allows developers to create their own intelligent IoT systems much

faster. In addition, it makes it possible to configure the corresponding

IoT systems, or to combine them among themselves [3]. Main features

of Kaa IoT platform perform real-time device monitoring; perform

remote device provisioning and configuration; collect and analyze

sensor data; analyze user behavior deliver targeted notifications; create

cloud services for smart products [5].

IBM Watson IoT Platform. You can try out their sample apps to

get a feel for how it all works. You can also store your data for a

specified period, to get historical information from your connected

devices. IBM Watson also offers some great security possibilities based

on machine learning and data science [2]. Users of IBM Watson get

device management; secure communications; real-time data exchange;

data storage; recently added data sensor and weather data service [3].

30. Intelligent methods and approaches for management and learning of IoT-based systems

475

Microsoft Azure IoT Platform. Representatives of Microsoft have

cloud storage, machine learning, IoT services, and have even developed

their own operating system for IoT devices [3]. Main features of Azure

IoT platform are device shadowing; a rules engine; identity registry;

information monitoring [4, 5].

Bosch IoT Suite - MDM IoT Platform. Bosch cloud offers its

customers complete safety and reliability while storing the data on its

secure server in Germany. The company hosts the cloud in Stuttgart,

Germany. Using Platform as a Service (PaaS) the company can offer its

service at fairly reasonable rates [2]. The main features of Bosch IoT

platform are the PaaS; remote manager; analytics; cost-effective; ready-

to-use [4].

30.1.2 Multi-criteria approach for choosing the IoT platform

Estimating and choosing a rational IoT platform is a rather

complicated process for many reasons, including: multi-factor

evaluation in the platform selection; complexity of preliminary

consideration of all possible stages of decision making; lack of

awareness of the peculiarities of modern information technology

development and IoT services market; insufficient technical and

material base and so on [6, 7].

In most cases, the choice of the IoT platform for the development

of the IoT systems comes to the comparative analysis of their

capabilities and taking the pricing policy for the services provided by

the developers of their own IoT platforms into account. Besides, IoT

developers often give preference to the well-known IoT platforms,

without considering the criteria (factors) that in the future may affect

the development, maintenance, updating, reliability, safety, and scaling

of the developed IoT systems [4]. The study [2] noted that the

following features and features of platforms should be taken into

account when choosing an IoT platform: orientation toward the hybrid

application environment; the ability to receive data and prepare it for

the analysis; a statement of the owner of the cloud infrastructure;

reliability and data safety; peripheral processing and data control.

One of the approaches to selecting an IoT platform is based on the

defining a reference platform architecture that includes the benefits and

capabilities of the existing modern IoT platforms [3]. Later on, a

30. Intelligent methods and approaches for management and learning of IoT-based systems

476

comparative analysis of the selected platforms with the reference one is

carried out and the best IoT platform is determined.

At the present time, there are several known methods of expert

evaluation and selection of IoT platforms [11, 12], in particular, the

analytic hierarchy process, the Delphi method and the decision making

methods based on fuzzy sets and fuzzy logic [8-10]. The considered

methods and approaches have some limitations and peculiarities of

application. For example, the necessity of calculation of the expert

judgment consistency; the limited number of levels of the hierarchy and

the dimension of the paired-comparison matrix; the constant contact

with experts for conducting the questionnaires; the need to update the

structure of the model when changing the number of criteria and

alternatives, etc. [4-10, 13].

Decision making process involves selecting one of the possible

variants of decisions according to the criteria under deterministic and/or

uncertain conditions. These possible variants of decisions are called

alternatives. For the problem of selecting decisions, it is necessary to

have at least two alternatives. When there are many alternatives, a

decision maker (DM) cannot take enough time and attention to analyze

each of them, so there is a need for means to support the choice of

decisions. There is also a need of such facilities when the number of

alternatives is small. In such problems, the number of alternatives, from

the consideration of which the choice begins, is relatively small.

However, they are not the only ones possible. Often, on their basis, new

alternatives arise during the selection process. Primary basic

alternatives do not always suit participants in the selection process.

However, they help to understand what exactly is missing in the

alternatives under consideration in this situation [6, 7]. This class of

problems is called problems with constructed alternatives. In the

modern theory of decision making, it is considered that the variants of

decisions are characterized by different indicators of their attractiveness

for DM. These indicators are called features, factors, attributes, or

quality measures [7]. They all serve as the criteria for selecting a

decision. In the vast majority of real problems, there are many criteria.

The complexity of the decision making tasks is also affected by the

number of criteria. With a small number of criteria (for example, for

two), the task of comparing the two alternatives is fairly simple and

transparent, the values of the criteria can be directly compared and a

30. Intelligent methods and approaches for management and learning of IoT-based systems

477

preferred alternative can be developed. With a large number of criteria,

the problem becomes immense for the DM. Fortunately, with a large

number of criteria, they can usually be combined into groups with a

spеcific semantic meaning. Such groups of criteria are, as a rule,

independent. The identification of a structure on a set of criteria makes

decision-making process meaningful and effective [6].

The traditional approach to operations research assumes the

existence of a single criterion for assessing the quality of the decision

[7]. However, the expansion of the field of application of operational

research methods led to the fact that analysts began to face problems in

which the existence of several criteria for assessing the quality of the

solution is essential [6, 7].

The analysis of many real practical problems naturally led to the

emergence of a class of multi-criteria problems. Most of the methods of

multi-criteria decision making (MCDM) provide transformation of a

multi-criteria problem into the one-criterion, which greatly simplifies

the decision making process [6, 7, 10, 13].

The task of selecting the IoT platform is formulated as an MCDM

problem and has the following form (decisions matrix):

1 1 1 2 1

2 1 2 2 2

1 2

 ...

 ...
; ; 1, 2,..., ; 1, 2,..., ,

...

 ...

m

m
i i

n n n m

Q E Q E Q E

Q E Q E Q E
Q E E E i m j n

Q E Q E Q E

 (30.1)

where iQ E is a vector criterion of quality for i-th alternative; j iQ E

is the j-th component of the vector criterion of quality iQ E .

The evaluation of the i-th alternative by the j-th criterion j iQ E

have a certain scale of assessment and is presented by experts based on

their experience, knowledge and experimental research in the field of

specialized IoT platforms [10].

To solve the IoT platform selection problem, it is necessary to find

the best alternative *E E using data (30.1):

 *

1...
Max , , 1,2,..., .i i
i m

E Arg Q E E E i m

 (30.2)

30. Intelligent methods and approaches for management and learning of IoT-based systems

478

The solution of the corresponding problems is found through the

use of such methods as the selection of the main criterion, the linear,

multiplicative and max-min convolutions, the ideal point method, the

sequential concessions methodology, the lexicographic optimization [6,

7]. For some of them, it is necessary to determine the weight

coefficients of the criteria, which sometimes is difficult with a large

number of criteria [8-10].

Let’s consider one of the existing multi-criteria decision-making

methods, for example, ideal point method to solve the corresponding

task of multi-criteria selection of the IoT platform [6].

The ideal point method implements the principle of an ideal

decision. It postulates the existence of an “ideal point” for solving a

problem in which the extremum of all criteria is achieved. Since the

ideal point in most cases is not among the existing solutions, then there

is a problem finding the "nearest" to the ideal permissible point. It

would have been nice if there was a single objective notion of

"distance", but it was not. If on a Cartesian two-dimensional subspace it

is possible to apply the Euclidean metric, then, for example, the shortest

path on the surface of a sphere is an arc, and not a straight line [6, 7,

10].

Thus, for solving the multi-criteria task using the ideal point

method, it is necessary above all:

 determine the coordinates of the ideal point;

 select a metric which you can measure the distance to the ideal

point.

To determine the coordinates of the ideal point you need to solve

 one-criterion tasks for each of the optimization criteria:

 ; ; 1,2,..., ; 1,2,...,j i iQ E Max E E i m j n . (30.3)

Optimal values of the criteria for each of the one-criterion

problems

 *

1,2,...,
; ; 1, 2,..., ; 1, 2,...,j j i i

i m
Q Max Q E E E i m j n

 , (30.4)

where *

jQ is the optimal value of the j -th criterion;

n

30. Intelligent methods and approaches for management and learning of IoT-based systems

479

will be the coordinates of the ideal point in the criteria space

 * * * *

1 2, ,..., nQ Q Q Q , (30.5)

where *Q is the ideal point; * * *

1 2, ,..., nQ Q Q

are optimal values of n

criteria (coordinates of the ideal point).

If the ideal point *Q is permissible (but this happens very rarely),

then the decision *E is considered to be obtained. Otherwise, it is

necessary to determine the distance , 1,2,...,id E i m to the ideal

point *Q . To do this, it is necessary to choose a metric and finally to

solve a one-criterion task of finding a point from the set of admissible

decisions, which is closest to the ideal one [6].

Thus, the optimization problem takes the following form:

 * ; ; 1,2,...,i i id E Q E Q Min E E i m , (30.6)

where id E is a distance from ideal point *Q to i -th alternative

 iQ E ;
is a metric for measure the distance to the ideal point *Q .

If the Euclidean metric [7] is chosen, then the criterion (30.6) takes

the form:

2

*

1

; ; 1,2,..., ; 1,2,...,
n

i j i j i

j

d E Q E Q Min E E i m j n

 , (30.7)

where j iQ E are the coordinates of the i -th alternative in the

criteria space; *

jQ

are the coordinates of the ideal point.

If the Hamming metric [7] is chosen, then the criterion (30.6) takes

the form:

 . (30.8)

The best alternative *E E has the smallest distance id E .

 *

1

; ; 1,2,...,
n

i j i j i

j

d E Q E Q Min E E i m

30. Intelligent methods and approaches for management and learning of IoT-based systems

480

30.1.3 Soft computing for the selection of specialized IoT

platform

Appropriate MCDM methods have some limitations: the need to

take into account the weight coefficients of the criteria; the provision of

the Pareto-optimal set of alternative decisions; the lack of the ability to

change the dimension of the vector of alternatives and criteria in real

time; the significant impact of the weight coefficients that the expert

determines, and the local criteria on the result [8-10].

Therefore, let us consider to use the soft computing approach, in

particular, Mamdani-type fuzzy logic inference engine for selection of

the specialized IoT platform [8, 9]. When selecting the specialized IoT

platform, a large number of the criteria, that is sometimes not relevant

and appropriate within the scope of a particular application, is used.

According to the various studies and own experience, consider the use

of the following important (main) criteria when selecting IoT platform

[10]: level of safety and reliability (
1Q); device management (

2Q);

integration level (
3Q); level of processing and action management (

4Q);

database functionality (
5Q); protocols for data collection (

6Q);

usefulness of visualization (
7Q); variety of data analytics (

8Q). In this

case, criteria
1 2 8, ,...,Q Q Q can act as input signals (coordinates) or

factors 1 2 8, ,...,X x x x of the fuzzy logic inference system.

The structure 1 2 8, ,...,y f x x x of the fuzzy logic inference

system for selection of the specialized IoT platform is presented in Fig.

30.1. It includes 3 fuzzy subsystems and has 8 input coordinates

 , 1,...,8jX x j and one output y , which are interconnected (by

common properties) by the fuzzy dependencies 1 1 1 2 3 4, , ,y f x x x x ,

 2 2 5 6 7 8, , ,y f x x x x and 3 1 2,y f y y of the appropriate rules bases

(RBs) of the 3 subsystems [8, 9].

To estimate the input coordinates , 1,...,8jX x j , three

linguistic terms (LTs) with a triangular form of the membership

function (MF), in particular "low - L", "medium - M" and "high - H",

are chosen. Five LTs 1 2, , , , ,y y L LM M HM H are chosen for the

evaluation of intermediate coordinates
1y - hardware level of the IoT

30. Intelligent methods and approaches for management and learning of IoT-based systems

481

platform,
2y - software level of the IoT platform. The output coordinate

y , which is intended for evaluation of the specialized IoT platform, has

7 LTs , , , , , ,y VL L LM M HM H VH .

Fig. 30.1 – The structure of the fuzzy logic inference system for

selection of the specialized IoT platform

The partial sets of rules of rules bases (RBs) for the first

 1 1 1 2 3 4, , ,y f x x x x and for the third 3 1 2,y f y y fuzzy subsystems

are

given in Table 30.1.

Table 30.1 – The partial sets of rules of RBs for the first and for the

third fuzzy subsystems

№ of

rule

Subsystem 1 1 1 2 3 4, , ,y f x x x x № of

rule

Subsystem 3 1 2,y f y y

1x
2x

3x
4x

1y
1y

2y y

1 L L L L L 1 L L VL

2 L L L M L 2 L LM L

… … … 3 L M LM

37 M M L L LM … … …

38 M M L M M 13 M M M

… … … 14 M HM HM

69 H M M H HM 15 M H H

70 H M H L M … … …

… … … 24 H HM H

81 H H H H H 25 H H VH

30. Intelligent methods and approaches for management and learning of IoT-based systems

482

Using the Mamdani-type algorithm [14-16] to develop the fuzzy

logic inference system for selection of IoT platform (Fig. 30.1), we

eliminate the need to form weight coefficients for the criteria. In this

case, this soft computing approach allows you to get rid of the

limitations on the number of alternatives. Thus, alternatives can be

evaluated in real time in unlimited quantities using the corresponding

engine. In addition, a relevant fuzzy system can be trained with the help

of, for example, the adaptive neuro-fuzzy inference system (ANFIS)

neural network, which will give more accurate results of IoT platform

evaluation [8,16].

30.2 Multi-agent approach for development and management

of IoT systems

In the modern world, the concept of IoT is impossible to imagine

without the use of multi-agent technologies [17]. For each physical

object, the program agent is brought into line with a certain degree of

intellectualism, representing his interests in the network.

The application of distributed computing systems allows

delegating complex tasks to software systems (agents), which, in turn,

lets one represent and solve problems that are difficult to formalize.

When the distributed access systems is designed, multiagent technology

allows you to combine both protocol and any application software

environment in a single system for processing and interacting with

different types of data [18]. Such a system has the flexibility, scalability

and efficiency of the distribution of load between servers.

According to the concept of multi-agent systems (MAS) and

technologies, the agent has only part of the knowledge of the general

problem, as a result, it is able to solve only part of the overall task.

Therefore, to solve a complex problem, you need to have a plurality of

agents that interact with each other, that is, a multi-agent system. Tasks

in such systems are distributed among agents in accordance with their

skills and capabilities. Any agent is an open system that has its own

behavior. Thus, an agent is considered to be capable of perceiving

information from a restricted environment, processing it on the basis of

its own resources, interacting with other agents and acting in the

environment for some time, pursuing its own goals [17].

30. Intelligent methods and approaches for management and learning of IoT-based systems

483

30.2.1 Types and characteristics of agents

The foundations of multi-agent systems were formed as a result of

the study of distributed computer systems, parallel computing and

network technologies. The autonomy of individual system modules is

the basis of multi-agency, and such modules are called agents. Each

agent operates in a distributed system, where several processes, which

may have been interconnected simultaneously, occur. An autonomous

object or program that is capable of active motivated behavior and

interaction with other objects in a dynamic environment is called an

agent. Agents have the ability to receive messages by interpreting their

content and generating new messages, which can be sent to other agents

or to the core of the multi-agent message board system that will be

available to all components of the system [17].

The multi-agent approach is used in various fields, among them

there are distributed solutions of complex tasks, reengineering in the

enterprise, interaction of robotic IoT systems [18].

There are two classes of tasks that are solved by multi-agent

approach. The first class includes tasks of distributed control and

planning. At the same time, the efforts of various agents are aimed at

solving a common problem, in such tasks it is necessary to ensure

effective interaction of agents. The second class includes tasks where

each agent solves his problem independently, using shared resources

[19-21].

The operation of the MAS is based on the principle of the division

of responsibilities between individual subsystems, that is, in the

common environment there are autonomous agents, whose work is

aimed at satisfying the interests of different users. In this case, agents

interact with each other while solving their tasks. These tasks include

the management of information flows, network administration, and

information search on the Internet, traffic management, collective

decision of multi-criteria tasks, and many more [20].

The emergence of collaboration agents in distributed systems led

to the formation of a modern representation of the agent. For a long

time, the multi-agent paradigm has accumulated a significant

theoretical base and experience [21]. Also, this research led to the

emergence of different model agents, their types and characteristics, as

30. Intelligent methods and approaches for management and learning of IoT-based systems

484

well as the tools and means necessary for their development. Different

principles of agents’ interaction were formed.

Increasing the complexity of tasks foo IoT systems and the

development of distributed computing has increased interest in the use

of software agents. A software agent is an autonomous process that can

respond to the environment and cause changes in conjunction with

users or other agents [21]. It should be noted that the medium also

affects the agent [1, 17]. Software agents are classified according to the

following main features.

Based on mobility [20]:

 stationary agents;

 mobile agents.

The main difference between mobile and stationary agents in this

classification is that mobile agents are able to move between nodes of

the computing environment.

By type of interaction [1]:

 cooperative agents;

 competing agents.

A cooperative agent has the ability to integrate with other agents in

the environment to solve a common task. In turn, competitors

competing inherently competitive behavior for their own interests.

There are also many other features that can be used to classify

agents [1]. First, it should be noted that agents can act as living beings.

The signs that we shall consider further relate to the classifications of

artificial agents (robots, automata or computer programs).

Agents can be generally divided into two large groups for

functional purposes [17]:

 functional agents are those that exist and work in the real world

and can be endowed with sensors to obtain information from the

environment. An example of such agents may be robots;

 information agents exist only in the software environment, they

mainly perform tasks related to computer calculations.

We distinguish the following types of agents by the ability to study

[18]:

 agents capable of training, and the behavior of such agents is

based on previously acquired experience;

30. Intelligent methods and approaches for management and learning of IoT-based systems

485

 non-capable of learning agents, they act according to pre-

written rules, which respond to changes in the environment.

By the ability of interaction [17]:

 stand-alone agents;

 know-how-to interact with other agents.

On the other hand, agents can be classified according to their

ability to reason or “think”. It is the most effective approach in

designing intelligent IoT systems. According to this classification, there

are two types of agents: intellectual (cognitive) and reactive.

Intelligent agents have a well-developed mathematical model of

the external world, which is constantly replenished. This is achieved

through the presence of a knowledge base agent and mechanisms for

analysis of actions. This type of agent is capable of conducting an

analysis based on a model of the environment using a sample mapping

method and, based on these data, of making decisions or performing

certain work. When an agent has some resources, its knowledge base

will contain information about the structure and status of resources,

which will have a significant effect on subsequent behavior. Intelligent

agent necessarily combines five main functions: cognitive; regulatory,

ability to reason; communicative; resourceful [17-20].

In turn, reactive agents do not have data on the environment, data

analysis mechanism, and resources. Therefore, these agents do not have

a mechanism for predicting changes in the environment and their

actions [17].

Also, the intelligent agent is characterized by higher autonomy

than that of reaction agent, having its own goals, for the satisfaction of

which they can use resources of other agents. In turn, reactive agents

are highly dependent on the external environment and are capable of

only corresponding reactions. Here is a comparison of these types of

agents in Table 30.2 [17].

The typical tasks put of the agents include [21]:

 temporary calculations. The work of agents is carried out not

only between fixed sub-networks of the network, but also between

mobile platforms that are connected to the network. As an example, this

can be the case: the mobile device is connected to the network and adds

an agent which has to do some work, and then disconnects it. After

30. Intelligent methods and approaches for management and learning of IoT-based systems

486

completing the agent's task, the device re-connects to another node of

the network and downloads the results of its operation;

Table 30.2 – Characteristics of agents

Characteristics Cognitive agents Reactive agents

The internal model of

the external world

Developed Primitive

Speculation Complex and reflexive Simple one-step

Motivation Developed motivation

system that includes

beliefs, desires,

intentions

The simplest

incentives associated

with survival

Memory Is None

Reaction Slow Fast

Adaptability Low High

Modular architecture Is None

Composition of the

MAS

A small number of

autonomous agents

A large number of

agents dependent on

each other

 search, processing and analysis of information. It is difficult for

a person to work with large volumes of data, therefore the use of agents

for the search and processing of information is effective enough;

 data monitoring. The agent in real time monitors the source of

the data and notifies any changes.

30.2.2 Communication agents with the external environment

The main types of agents interaction with each other and with the

environment include [17]:

 cooperation (it is the main form of interaction between agents

and the environment, characterized by the unification of their actions,

resources and means to achieve a common goal, with the division of

functions between them);

 competition (confrontation, conflict);

 compromise (it is important to meet both your own

requirements and the opponent's requirements);

 conformism (refusal of their claims in favor of the opponent);

 rejection of interaction.

30. Intelligent methods and approaches for management and learning of IoT-based systems

487

The reactive agents interact with other agents in order to survive,

their communication cannot be called intentional, it is based primarily

on natural principles. Unlike intelligent agents, which co-operate

"consciously" to meet the needs. After all, as an agent or system is able

to be under the influence of the environment, it reflects its performance.

Co-operation between agents and the environment can arise both on the

principles of co-operation or forced, and on the basis of situational

cooperation or voluntarily. Agreements and co-operation between

agents is needed. One can distinguish the following main reasons for

the cooperation of agents [19].

A common goal. As a rule, if the agents are bound by this cause,

then they will interact with the type of cooperation. However, it is

necessary to check that such cooperation does not lead to the

destruction of the agent or its viability. There is another possible

situation when agents do not coincide. Then there are conflicts between

MAS objects. But in this situation conflicts can also have a positive

impact on the system. They promote development and provide

incentives for agents. There are systems with simultaneous interaction

types of cooperation and confrontation. An example is the predator-

victim model [20].

To achieve its goal, the agent needs some resources, that is,

resources. If agents do not have shared resources - conflicts arise. To

solve this problem, the rule is said to "win stronger". That is, a stronger

agent will pick up resources at the weaker one. This can be called the

most effective and easiest way to resolve such conflicts. But in some

situations it is advisable to negotiate [21]. In this case, the agents are

compromising, taking into account the interests of everyone.

Each agent utilizes a limited set of knowledge that he or she may

need to achieve local and global issues. Therefore, he has to look for

interactions with other agents [17].

Thus, the following circumstances are distinguished:

1) the agent is able to achieve the goal without the help of others,

ie independently;

2) the agent is able to achieve the goal on its own, but through

interaction the problem can be solved more effectively or faster;

3) the agent can achieve the goal only by using third-party help.

Agents can independently choose the type of interaction with each

agent or environment, depending on the relevance of the connection.

30. Intelligent methods and approaches for management and learning of IoT-based systems

488

In order to establish the order between agents in the process of

interaction, there are obligations. With the help of commitments, you

can predict the actions of other agents and plan their own. Below are

the following types of obligations [1]:

1) the agent is obliged to other agents;

2) the agent is obliged to the group;

3) the group is obliged to the agent;

4) the agent is obliged to himself.

Formal representation of goals, commitments, desires and

intentions, as well as all other data, forms the basis of the mental model

of the intellectual agent that provides its motivated behavior in offline

mode.

There are various forms of agent cooperation [17]:

 ordinary cooperation, which is achieved through the exchange

of experience of each agent (sharing tasks, sharing of knowledge, etc.)

without special measures to coordinate their actions;

 co-ordinated collaboration, if agents have to coordinate their

steps (sometimes using the so-called coordinating agent) for the

efficient use of resources and their experience;

 non-productive cooperation, if agents together use resources or

solve common problems without sharing experience and interfering

with one another.

30.2.3 Data transfer techniques between agents in IoT systems

In order for agents to transmit information to each other in

distributed systems, they use agent interaction. To do this, the MAS

uses [17]:

 universal programming languages, such as (Java);

 knowledge-oriented languages, i.e. knowledge representation

languages (Knowledge Interchange Format (KIF)); language of agent

interaction (Foundation for Intelligent Physical Agents (FIPA),

Knowledge Query and Manipulation Language (KQML), AgentSpeak,

April);

 language of agent specifications;

 specialized programming languages for agents (TeleScript);

 script description languages (Tc / Tk);

 languages of logical programming (Oz);

30. Intelligent methods and approaches for management and learning of IoT-based systems

489

 lisp-like languages that are close to ordinary language.

Two different approaches can be used to develop a data exchange

language between agents. The first approach is procedural, which

means that communication is based on the implementation of

instructions. Such a language can be designed and programmed on Java

or on a development tool such as Tcl. The second approach is

declarative, that is, communication is based on descriptions. This

approach has become more widely used to create sharing languages

between agents [1]. The most popular standards defining the language

of agent communication are FIPA [11] and KQML [19].

FIPA standard. Developed by the FIPA Committee [17]. It

includes the FIPA ACL (Agent Communication Language) language

[7], through which agents can transmit messages of a certain format

using various data services, and a LISP-like language describing the

content of the FIPA SL (Semantic Language) message. The internal

architecture of the FIPA standard consists of the following services,

which are integrated into the general registry:

 message service;

 service of registration of agents in the environment (that is, in

the MAS);

 service description of the language of communication agents;

 a register of all services.

This architecture can interact with external systems for managing

and implementing current agent tasks.

KQML standard. Designed by the ARPA Committee (Advanced

Research Projects Agency) [17]. It includes the KQML language that

defines a set of performativity actions and a LISP-like language for

describing the content of the message, KIF. The standard consists of

three levels: the communicative level (describes parameters such as

sender, receiver, and different message identifiers), message level

(describes requests, control actions, and protocol for interpreting the

message), and content level (contains information that accompanies

message level requests).

The standard is characterized by the following main features:

 agents are connected by one-way communication channels, by

which fixed communications are transmitted;

30. Intelligent methods and approaches for management and learning of IoT-based systems

490

 communication channels may have a non-zero delay in the

transmission of the message;

 when receiving a message, the agent determines who and what

input message this message has arrived on;

 the agent can send the message only through a specific channel;

 messages for a particular addressee are received in the dispatch

order;

 delivery of messages is absolutely reliable дійна.

The standard supports both synchronous and asynchronous

transmission of messages. Agents can communicate directly with other

agents (with a symbolic name), send out broadcast messages, or "ask"

other agents-participants in the conversation. The following are

examples of systems implemented with KQML [1, 17]:

 Next-Link software program [1] developed at Stanford

University aims at exploring the principles of coordination, allowing

established agents to carry out distributed design and design of systems;

 Logic Centered Design [18], developed at Lockheed AI

Center's Center of Artificial Intelligence, which is positioned as an

intelligent information system for designing systems;

 Concur [19] web server presentations developed at Stanford

University by Gregory R. Olsen, which uses an agent approach to

computing in distributed design systems;

 a software complex for distributed data acquisition on global

temperatures and dampness [20], developed by Diane Weiss of MITRE.

30.3 Methods and approaches for learning of IoT-based

systems

Microsoft together with the technology developer for IoTFathym

helps to cope with dangerous glaciation of roads in Alaska caused by

unusual edge fluctuations in temperature [1]. Fluctuations in

temperature lead to glaciation of roads, but past experience no longer

helps to cope with the situation. IoT sensors and machine learning came

to the rescue. Fathym equipped snow-removal cars and light truck fleets

of the county with a system of mobile sensors that track the temperature

of the road, the amount of precipitation, and the condition of the road

surface [22]. During the normal working day, sensors send data at 3-

30. Intelligent methods and approaches for management and learning of IoT-based systems

491

second intervals to the cloud-based analytical platform WeatherCloud,

which runs on the basis of cloud-based Microsoft services. The

platform connects the findings with the forecasts of local

meteorological stations and gives the result. For example, if

WeatherCloud shows that in the north of the city there is more ice than

in the south, it distributes chemical reagents, respectively. If the result

warns of a decrease in temperature after 3 days, it does not send a

command with reagents from which there will be even more ice. Such

information allows not only to save money from the local transport

department but also save lives. Annually in the USA 150 000 accidents

occur on the roads through ice, injuries are received by 39 000 people,

550 people die. The Alaska Transportation Department is the first

customer, but the company plans to transfer its experience to other

states and abroad. The cloud's IoT platform, developed by RoadBotics,

works with smartphone cameras and continuously monitors travel

conditions when drivers drive on US roads. And the technology of deep

learning helps to identify defects in the road surface [23].

30.3.1 General principles of M2M learning and self-learning

systems

Machine-to-Machine (M2M) learning is a set of technologies that

allow machines to exchange information with one another, or to

transmit it unilaterally [22]. These can be wired and wireless sensors

monitoring systems or any device parameters (temperature, stock

levels, location, etc.). For example, ATMs or payment terminals can

automatically transmit information over GSM networks, or if they have

check paper or cash finished, or conversely because there is too much

cash and the arrival of collectors is required. M2M is also actively used

in security and safety systems, health systems, industrial telemetry

systems, and positioning systems for moving objects based on

GLONASS / GPS systems [1]. One of the subclasses of M2M is the use

of mobile solutions, and it can also use the abbreviation M2M (Mobile-

to-Mobile).

Self-learning systems these are intellectual information systems,

which, based on examples of real practice, automatically generate the

proper knowledge [23].

At the heart of self-learning systems, there are the methods of

automatic classification of examples of real practice, which means

30. Intelligent methods and approaches for management and learning of IoT-based systems

492

training on the samples. Examples of real situations accumulate over a

period and constitute a training sample. As a result of learning the

system automatically generates generalized rules or functions that

determine the attachment of situations to the classes that the trained

system uses in interpreting unfamiliar situations. From the general

rules, the knowledge base is automatically formed, which is

periodically adjusted as the information on the situations analyzed

grows [1].

Distinguish the following types of self-learning systems.

Inductive systems [22]. A system with inductive output is a self-

learning intelligent system, which works on the principle of induction

by classifying examples by significant features. Inductive conclusion

(from partial to general) generalizes the statement on the basis of the

plural of partial statements. The generalization of examples on the basis

of this principle is reduced to the choice of the classification mark from

the set of given; detecting a plurality of examples by the value of the

selected attribute; determining the belonging of these examples to one

of the classes. The classification procedure can be represented as a

decision tree, in which the intermediate nodes are the values of the

signs of the sequential classification and in the end nodes the value of

the attribute of belonging to a certain class.

Neural Networks are self-learning intelligent systems, which are

built on the basis of learning real examples an associative network of

concepts (neurons) for parallel solutions to it [23]. As a result of

training, mathematical solving functions (transfer functions or

activation functions) that form the dependencies between input and

output characteristics (signals) are formed on the examples.

Case-based reasoning systems [22] are self-learning intelligent

systems that, as units of knowledge, preserve the precedents of

solutions (examples) and allow, upon request, to select and adapt the

most similar precedents. In these systems, the knowledge base contains

descriptions of non-generalized situations, and actually the situations

themselves or precedents. Then the search for a solution to a problem is

reduced to a search by analogy (abductive conclusion).

Data warehouses are self-learning intelligent systems that allow

you to learn from databases and create specially-organized knowledge

bases. Information repositories are a repository of meaningful

information, are regularly exported from operational databases and are

30. Intelligent methods and approaches for management and learning of IoT-based systems

493

intended for operational analysis of data (implementation of OLAP-

technology). To extract meaningful information from databases, special

methods (Data Mining or Knowledge Discovery) are based on the use

of methods of mathematical statistics, inductive methods of

constructing decision trees or neural networks [23-25].

30.3.2 Technologies and applications of M2M learning

The most successful algorithms of machine learning are those that

automate the processes of decision-making by generalizing known

examples. In these methods, known as teacher training or supervised

learning, the user provides an object-response pair of algorithms, and

the algorithm finds a way to get an answer to an object. In particular,

the algorithm is able to find an answer to an object which it had never

seen before, without any human help. Returning to the example of spam

classification using machine learning, the user submits an algorithm to

a large number of letters (objects) along with information about

whether a message is a spam or not (answers). For a new email, the

algorithm will determine the probability that this message can be

attributed to spam [24].

The algorithms of machine learning, which are studied in the

object-response pairs, are called learning algorithms with the “teacher”,

as the "teacher" shows the algorithm of response in each observation,

on which the learning takes place. Despite the fact that creating a set of

objects and responses - this is often a labor-intensive process, which is

carried out manually, learning algorithms with the teacher interpreted

and the quality of their work easy to measure. If the task can be

formulated as a task work with a teacher, and you can create a dataset,

which includes answers, then it is likely that machine learning will

solve this problem [25].

Let's consider examples of problems of machine learning with a

teacher [22].

Determination of postal code by handwritten digits on an

envelope. Here the object will be a scanned image of the handwriting,

and the answer is the actual digits of the postal code. To create a dataset

for building a model of machine learning, you need to collect a large

number of envelopes [23]. Then you can independently read the postal

codes and save the numbers in the form of responses.

30. Intelligent methods and approaches for management and learning of IoT-based systems

494

Definition of tumor benignity on the basis of medical images. Here

the object will be the image, and the answer is the diagnosis of whether

the tumor is benign or not. To create a dataset for model building, you

need a database of medical images. In addition, you need an expert

opinion, so the doctor should look at all the images and decide which

tumors are low-quality, and which are not. In addition to image

analysis, you may need additional diagnostics to determine the high

quality of the tumor [23].

Detecting fraudulent activity in credit card transactions. Here the

object is a transaction with a credit card, and the answer is information

about whether the transaction is fraudulent or not. For example, you are

the institution issuing credit cards, dumpers have the purpose of saving

all transactions and records of customer messages about fraudulent

transactions [23].

With these examples, it's interesting to note that although objects

and answers look quite simple, the process of data collection for these

three tasks is significantly different. Despite the fact that reading

envelopes are labor-intensive occupation, this process is simple and

cheap. Getting medical images and performing diagnostics requires not

only expensive equipment but also rare, highly paid expert knowledge,

not to mention the ethical issues and issues confidentiality. In the

example of detecting credit card fraud, data collection is much easier.

Your customers will give you an answer by reporting fraud. All you

have to do to get objects and responses related to fraudulent activity is

to wait [22].

Learning algorithms without a teacher or uncontrolled learning.

In the algorithms of learning without a “teacher”, only objects are

known, and there are no answers. Although there are many successful

areas for the application of these methods, they are usually more

difficult to interpret and evaluate [24].

Let's look at examples of problems of machine learning without a

teacher.

Definition of topics in the set of posts. If you have a large

collection of text data, you can aggregate them and find the most

common themes. You do not have any previous information about what

topics are being considered and how much they are. Therefore, there

are no known answers.

30. Intelligent methods and approaches for management and learning of IoT-based systems

495

Dividing clients into groups with similar preferences. With a set of

customer records, you can identify groups of clients with similar

benefits. For a trading site, such groups may be "parents", "bookmates"

or "gamers". Because you do not know in advance about the existence

of these groups and their quantities, you have no answers [22].

Detecting patterns of abnormal behavior on the website. It is often

useful to identify mistakes, patterns of behavior that are different from

the norm. Patterns of abnormal behavior may be different, and, perhaps,

you will get registered cases of abnormal behavior. Because in this

example you only see traffic, and you do not know what is normal and

abnormal behavior. It is a problem of learning without a teacher [23].

When solving the problem of machine learning with and without a

teacher, it is important to present the input data in a format that is

understandable for the computer. Often the data is presented as a table.

Each data point you want to explore (each email, each client, each

transaction) is a string, and each property that describes this data point

(e.g., customer's age, amount, or transaction place) is a column. You

can describe users by age, article, account creation date and shopping

frequency in an online store. You can describe the image of a tumor

using grayscale for each pixel or with the size, shape, and color of the

tumor. In machine learning, each object or line is called a sample or a

data point, and column properties. These examples are called

characteristics or features [1, 22].

But no algorithm for machine learning will be able to predict data

that does not contain any useful information. For example, if the only

sign of a patient is his or her last name, the algorithm will not be able to

predict his gender. This information is simply not available in the data.

If we add another sign-the patient's name, the effectiveness of accurate

prediction is higher, since often, knowing the person's name, one can

judge his/her gender [22, 23].

30.3.3 Neural networks for learning of IoT-based systems

In the past few years, the Artificial Intelligence field has entered a

high growth phase, driven largely by advancements in Machine

Learning methodologies like Deep Learning (DL) and Reinforcement

Learning (RL). Combinations of those techniques demonstrate

unprecedented performance in solving a wide range of problems,

30. Intelligent methods and approaches for management and learning of IoT-based systems

496

from playing Go at super-human level to diagnosing cancer like a

specialist [22].

DL/RL innovations are happening at an astonishing pace

(thousands of papers with new algorithms are presented in numerous AI

related conferencesevery year). Though it is premature to predict the

final winning solutions, hardware companies are racing to build

processors, tools, and frameworks. They are trying to identify pain

points and bottlenecks in DL workflows (Fig. 30.2), leveraging years of

experience of researchers [23].

Fig. 30.2 – Basic Deep Learning Workflow [23]

Let’s consider some training platforms. Graphical Processing

Units (GPU) based systems are usually the choice for training advanced

DL models. Nvidia has long realized the advantages of using GPU for

general purpose high performance computing [8, 9].

GPU has hundreds of compute cores that support a large number

of hardware threads and high throughput floating point computations.

Nvidia developed Compute Unified Device Architecture (CUDA)

programming framework to make GPU friendly for scientists and

machine learning experts to use [24].

CUDA toolchain has improved overtime, providing researchers a

flexible and friendly way to realize highly complex algorithms. A few

years ago, Nvidia aptly identified the DL opportunity and persistently

developed CUDA support for most of DL operations. Standard

30. Intelligent methods and approaches for management and learning of IoT-based systems

497

frameworks like Caffe, Torch, and Tensorflow all support CUDA [25].

In cloud services like AWS, developers have a choice between using

CPU or GPU (more specifically Nvidia GPU). Platform choice depends

on the complexity of the neural networks, budget, and time.

30.4 Work related analysis

A lot of developments and approaches for management and

learning of IoT-based systems belongs to Leeds Beckett University,

Newcastle University, KTH Royal Institute of Technology and

University of Coimbra. The paper [11] considers the architecture of a

typical IoT Data Analytics Platform (IoTDAP), which starts with raw

data collection from sensing devices and ends with complex data

analytics and decision making activities. This research [12] aims at

creating a resource-sharing platform to support such relationships, in

the perspective that resource unconstrained devices can assist

constrained ones, while the latter can extend the features of the former.

A hybrid multi-objective approach based on GRASP (Greedy

Randomized Adaptive Search Procedure) and SA (Simulated

Annealing) meta-heuristics is proposed [13] to provide decision support

in a direct load control problem in electricity distribution networks. The

incorporation of preferences is made operational using the principles of

the ELECTRE TRI method, which is based on the exploitation of an

outranking relation in the framework of the sorting problem. Diversity

of hard logic and soft processors, interfaces and buses, self-diagnostics

means are described in paper [14]. Addressed to the problem of

translating the control knowledge of a human expert operator into fuzzy

control rules, this paper [15] proposes an approach to automatically

design a Mamdani fuzzy logic controller. The proposed approach is

based on the use of a data set extracted from a process that has been

manually controlled, and has the aim of learning a Mamdani logic

controller with the capability to imitate the control action of an expert

human operator. The results show that the proposed approach has the

capability of designing the Mamdani fuzzy controller in order to

successfully controlling the real experiment [15]. Knowledge gained

through classification of microarray gene expression data is

increasingly important as they are useful for phenotype classification of

diseases. Different from black box methods, fuzzy expert system can

produce interpretable classifier with knowledge expressed in terms of

30. Intelligent methods and approaches for management and learning of IoT-based systems

498

if-then rules and membership function. This paper [16] proposes a

novel Genetic Swarm Algorithm (GSA) for obtaining near optimal rule

set and membership function tuning.

This paper [18] focus on the development of a hierarchical multi-

agent framework for resilience enhancement over wireless sensor and

actuator networks. Experimental results collected from a laboratory

IPv6 based test-bed comprising distributed computational devices and

heterogeneous communications, show unequivocally the relevance and

inherent benefits of the proposed approach. In this paper [19] authors

identify some of the existing MAS architectures for WSNs, and propose

some novel architectures. Multi-agent platform and toolbox for fault

tolerant networked control systems are considered in the paper [20].

This work aims to expand on previous investigations considering

frequency control and examines distributed communication and control

architectures through the medium of MAS focusing on voltage control

in a radial microgrid. The investigation assesses control and

communication performance across a range of agent architectures

against four selected performance criteria, and an increasing agent

population [21].

In M2M networks, an energy efficient scalable medium access

control (MAC) is crucial for serving massive battery-driven machine-

type devices. In this paper [24], authors investigate the energy efficient

MAC design to minimize battery power consumption in cellular-based

M2M communications [25]. Authors present an energy efficient MAC

protocol that not only adapts contention and reservation-based

protocols for M2M communications in cellular networks, but also

benefits from partial clustering to handle the massive access problem.

Conclusions and questions

In this section, the materials for module PCM4.3 “Intelligent
methods and approaches for management and learning of IoT-
based systems” of PhD course “Development and implementation

of IoT-based systems” are presented. They can be used for preparation

to lectures and self-learnig for lecturers, PhD-students, IoT

developers, etc. These module materials were developed by Prof.

Yu. P. Kondratenko, Assoc. Prof. G. V. Kondratenko, Assoc. Prof.

Ie. V. Sidenko, Ph.D. Student M. O. Taranov.

30. Intelligent methods and approaches for management and learning of IoT-based systems

499

Recently, the direction associated with the analysis of the

intelligent methods and approaches for management and learning of

IoT-based systems has become very popular and effective. This gave

rise to such areas as neural network technologies, cloud and fog

computing, control systems, comuter vision, etc [2, 3, 8-10].

This chapter discusses the types and capabilities of IoT platforms,

multi-criteria approach and soft computing for choosing the IoT

platform [6-10]. Also analyzed the concept of multi-agent approach in

IoT, in particular, types and characteristics of agents, communication

agents with the external environment and data transfer techniques

between agents. In addition, an important component of the IoT

network is the choice of methods and approaches for learning of IoT-

based systems. Also considered general principles of M2M learning,

self-learning systems and neural networks [22, 23].

The considered methods and approaches are widely used in all

applications of the IoT, for example, medical and healthcare,

transportation systems, building and home automation, manufacturing,

agriculture, energy management, environmental monitoring, etc [1, 4].

In order to better understand and assimilate the educational

material that is presented in this section, we invite you to answer the

following questions.

1. What is the IoT platform?

2. What criterion is responsible for working with 2D- and 3D-

models and graphs?

3. What platform is developed by Amazon?

4. What is the minimum number of criteria necessary when

solving a problem using multi-criteria decision making?

5. What does this component j iQ E mean?

6. What is needed to solve the problem by MCDM methods?

7. What is the main principle of the ideal point method?

8. What is the Euclidean metric?

9. What is the Hamming metric?

10. What is the form of membership function in a linguistic term?

11. What is the ANFIS?

12. What is the main difference between mobile and stationary

agents?

13. What is the functional agent?

30. Intelligent methods and approaches for management and learning of IoT-based systems

500

14. What is the reaction of cognitive agents?

15. What are the most popular standards defining the language of

agent communication?

16. What is the neural network?

17. What is the synonymous name of the learning algorithm

without a teacher?

References

1. F. Hussain, Internet of Things: Building Blocks and Business Models.

Cham: Springer, 2017.

2. G. Keramidas, N. Voros, and M. Hubner, Components and Services for

IoT Platforms. Cham: Springer, 2017.

3. J. Guth, U. Breitenbucher, M. Falkenthal, F. Leymann, and L. Reinfurt,

"Comparison of IoT platform architectures: A field study based on a reference

architecture," Cloudification of the Internet of Things (CIoT), P.72-77,

November 2016.

4. Y. Kondratenko, G. Kondratenko and I. Sidenko, "Multi-criteria

Decision Making and Soft Computing for the Selection of Specialized IoT

Platform," in Recent Developments in Data Science and Intelligent Analysis of

Information. ICDSIAI 2018. Advances in Intelligent Systems and Computing,

vol. 836, O. Chertov, T. Mylovanov, Y. Kondratenko, J. Kacprzyk, V.

Kreinovich, and V. Stefanuk, Eds., 2019, P. 71-80. DOI: 10.1007/978-3-319-

97885-7_8.

5. Y. Kondratenko, G. Kondratenko, and I. Sidenko, "Multi-criteria

decision making for selecting a rational IoT platform," IEEE 9th International

Conference on Dependable Systems, Services and Technologies (DESSERT),

P. 147-152, May 2018.

6. A. V. Katrenko, V. V. Pasichnyk, and V. P. Pas’ko, Decision making

theory. Kyiv: Publ. Group BHV, 2009 (in Ukrainian).

7. Y. P. Zaychenko, Decision making theory. Kyiv: NTUU “KPI”, 2014

(in Ukrainian).

8. A. P. Rotshtein, Intelligent Technologies of Identification: Fuzzy

Logic, Genetic Algorithms, Neural Networks. Vinnitsya: Universum Press,

1999 (in Russian).

9. A. Piegat, Fuzzy Modeling and Control. Heidelberg: Springer, 2001.

10. G. Kondratenko, Y. Kondratenko, and I. Sidenko, "Fuzzy Decision

Making System for Model-Oriented Academia/Industry Cooperation:

University Preferences," in Complex Systems: Solutions and Challenges in

Economics, Management and Engineering. Studies in Systems, Decision and

30. Intelligent methods and approaches for management and learning of IoT-based systems

501

Control, vol. 125, C. Berger-Vachon, A. Gil Lafuente, J. Kacprzyk, Y.

Kondratenko, J. Merigó, C. Morabito, Eds., 2018, P. 109-124.

11. G. Kecskemeti, G. Casale, D. Jha, J. Lyon, and R. Ranjan,

"Modelling and Simulation Challenges in Internet of Things," in IEEE Cloud

Computing, vol. 4, no. 1, 2017, P. 62-69.

12. R. Silva, J. Sa Silva, and F. Boavida, "A symbiotic resources sharing

IoT platform in the smart cities context," IEEE Tenth International Conference

on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),

P. 192-197, April 2015.

13. E. Oliveira, C. Henggeler Antunes, and A. Gomes, "A hybrid multi-

objective GRASP+SA algorithm with incorporation of preferences," IEEE

Symposium on Computational Intelligence in Multi-Criteria Decision-Making

(MCDM), P. 32-39, December 2014.

14. O. Illiashenko, V. Kharchenko, A. Kor, A. Panarin, and V. Sklyar,

"Hardware diversity and modified NUREG/CR-7007 based assessment of NPP

I&C safety," 9th IEEE International Conference on Intelligent Data

Acquisition and Advanced Computing Systems: Technology and Applications

(IDAACS), P. 907-911, September 2017.

15. J. Mendes, A. Craveiro, and R. Araujo, "Iterative Design of a

Mamdani Fuzzy Controller," 13th APCA International Conference on Control

and Soft Computing (CONTROLO), P. 85-90, June 2018.

16. P. Ganesh Kumar, T. Aruldoss Albert Victoire, P. Renukadevi, and

D. Devaraj, "Design of fuzzy expert system for microarray data classification

using a novel Genetic Swarm Algorithm," in Expert Systems with Applications,

vol. 39, no. 2, 2012, P. 1811-1821.

17. R. Fagin, J. Halpern, Y. Moses, and M. Vardi, Knowledge in Multi-

Agent Systems. Cambridge: MIT Press, 2003.

18. F. Januario, A. Cardoso, and P. Gil, "Multi-agent approach for

resilience enhancement in wireless sensor and actuator networks," Joint 17th

World Congress of International Fuzzy Systems Association and 9th

International Conference on Soft Computing and Intelligent Systems (IFSA-

SCIS), P. 635-640, June 2017.

19. R. Tynan, G. O’Hare, D. Marsh, and D. O’Kane, "Multi-agent

System Architectures for Wireless Sensor Networks," in Lecture Notes in

Computer Science, 2005, P. 687-694.

20. M. J. G. C. Mendes, B. M. S. Santo,s and J. S. da Costa, "Multi-agent

Platform and Toolbox for Fault Tolerant Networked Control Systems,"

in Journal of Computers, vol. 4, no. 4, 2009, P. 303-310.

21. C. Cameron, C. Patsios, and P. Taylor, "On the benefits of using self-

organising Multi-Agent architectures in network management," International

30. Intelligent methods and approaches for management and learning of IoT-based systems

502

Symposium on Smart Electric Distribution Systems and Technologies (EDST),

P. 335-340, September 2015.

22. R. Schneiderman, "Internet of Things/M2M-A (Standards) Work in

Progress," in Modern Standardization, 2015, P. 203-234.

23. A. Laya, L. Alonso, J. Alonso-Zarate, and M. Dohler, "Green MTC,

M2M, Internet of Things," in Green Communications, 2015, P. 217-236.

24. A. Azari and G. Miao, "Energy efficient MAC for cellular-based

M2M communications," IEEE Global Conference on Signal and Information

Processing (GlobalSIP), P. 128-132, December 2014.

25. G. Lawton, "Machine-to-machine technology gears up for growth,"

in Computer, vol. 37, no. 9, 2004, P. 12-15.

31. Prototyping and rapid development of IoT systems

503

31. PROTOTYPING AND RAPID DEVELOPMENT

OF IOT SYSTEMS

Assoc. Prof., Dr A. P. Plakhteyev, MSc student

H. A. Zemlianko (KhAI)

Contents

Abbreviations .. 504

31.1 IoT devices .. 505

31.1.1 Interaction of end devices with IoT .. 505

31.1.2 EDGE Computing for Association Sensor Networks 507

31.1.3 Types and structure of IoT devices ... 509

31.2 Prototyping and rapid development principles 511

31.2.1 Main concepts ... 511

31.2.2 Techniques for prototyping of IoT systems 513

31.2.3 Rapid Prototyping of Fragments of Internet of Things 515

31.2.4 Modeling of Access to WEB Resources 517

31.3 Cases of IoT systems rapid development 519

31.3.1 Case 1. Collection of data on an angular position of the mobile

platform of road laboratory .. 519

31.3.2 Case 2. Monitoring of temperature with use of a cloud service of

Thingspeak and access on WiFi .. 527

31.4 Work related analysis .. 530

Conclusions and questions... 531

31. Prototyping and rapid development of IoT systems

504

Abbreviations

BLE – Bluetooth Low Energy

BN – Boundary node

CPU – central processing unit

HRDMI – High Resolution Distance Measurement Instrument

IDK – IoT Development Kit

LED – Light-emitting diode

MCU Microcontroller Unit

ROMDAS –ROad Measurement Data Acquisition System

SN – Sensor network

SoC – System on Chip

Sigfox – Global Communications Service Provider for the IoT

USART – Asynchronous serial interfaces –

31. Prototyping and rapid development of IoT systems

505

The Internet of things develops very quickly. A variety application

demands inclusion in development of specialists of different

qualification. For entry into the market time of development is reduced

with since normal 9-12 months and tends to reduction up to 3 - 6

months. Compliance to requirements for functionality, flexibility,

opportunities of development, energy efficiency, and cost of products

and to operating costs depends on quality of design. Eventually success

in the market of projectable IoT of systems is defined. Unlike many

other IoT applications the small-size devices capable to provide

interaction with other devices by means of peer-to-peer or network

connections are required.

31.1 IoT devices

31.1.1 Interaction of end devices with IoT

In the general scheme (Fig. 31.1) of the interconnection of nodes

of sensor networks (SN), individual devices (Dev), sensors (S),

actuators (A) are showed. At the Edge, Dew, Fog, Cloud (Cloudlet)

levels, the state of S and A is represented by digital copies (Digital

Twin).

Sensor networks can be wired and wireless. The most popular

networks are Ethernet, RS485 and similar, CAN, LIN, etc. Wireless

networks can be proprietary in the ISM bands 315, 433, 868 MHz, as

well as 2.4 GHz networks based on the IEEE802.15.4 standard

(ZigBee, 6LoWPAN, etc.)), IEEE802.15.1 (Bluetooth v.2 .. 5),

IEEE802.11 (WiFi). Low-speed sensor networks in industry and home

automation are combined using high-speed interfaces - Ethernet, WiFi.

In fact, a heterogeneous network is formed, where it is necessary to

provide access to various nodes in each network and their

interconnectivity. Boundary nodes are bridges (gateways) between

segments of sensor networks [1].

Thus, the IoT fragment can be represented as a hierarchical

structure from a variety of disparate sensor networks SN = {SN1, SN2,

SNi, ...}. Each network consists of a set of nodes: SNi = {Ni, 1, ..., Ni,

j, ...} connected by the network communication interface Ci from the

set C = {C1, C2, ...}, by the protocol Pi from set P = {P1, P2, ...}. The

Ni, j node serves a set of sensors (S) and actuators (A). To implement

31. Prototyping and rapid development of IoT systems

506

the functions of the node a microcontroller platform MCUi, j is used

that has a network interface Ci, as well as analog and digital interfaces,

that form data streams from sensors S and for controlling actuators A.

Networks are designed to collect data from sensors primary processing,

accumulation, presentation in some form (indication, sound, video,

etc.), control and management of executive devices. The network can

be embedded in some object (robot, tool, machine, etc.), and the state of

set S and A determines the state of the object.

Let the current state of the node of one network be determined by

the state of the sensor S, and the node of the other network by the state

of the actuator A. In so doing, the state S is displayed on the state A.

The simplest example is that the state of the switch determines by the

state of the lamp, which can be realized by their direct connection.

Alternatively, the state S is determined by the MCU that is associated

with the MCU that controls A.

Fig. 31.1 – Methods of an interaction of network nodes

The logical link of the sensor to the executive device can be

implemented: interconnectivity by sending a message S' that displays

the state S to another network as a package A' representing the state A.

In the case of different interfaces and protocols of associated sensor

networks, a series of transformations S'→ A' is required. In the absence

of direct network connection, Edge computing is used, operating with a

digital representation of < S'', A'' >, that is called Digital Twin [2].

Accordingly, Digital Twin at the levels Dew, Fog, Cloud, will be used

in various forms, but displaying the current state of <S, A>.

31. Prototyping and rapid development of IoT systems

507

Synchronization <S', A'>, <S'', A''>, ..., <S''''', A'''''' requires certain

computational costs and the expenditure of traffic, and hence - time

costs. Generally, there are time intervals of the desynchronization in the

meaning of various Digital Twin, which can affect the operation of

systems sensitive to such uncertainties. Here, it should be entrusted

Edge computing with critical to communication delays and direct

interaction of sensor networks.

31.1.2 EDGE Computing for Association Sensor Networks

Cloud technologies implement a variety of IoT services for

storage, data processing and remote access (Amazon Web Services IoT

Platform, Microsoft Azure IoT Hub, Google Cloud IoT, IBM Watson

IoT Platform, CISCO IoT Cloud Connect, ThingSpeak, etc.). This

simplifies the development of applications for IoT. But these

technologies have a lot of disadvantages [3]. There are restrictions on

the intensity of the data flow for storage in the Cloud stores and a

significant delay in access to these data. For a growing number of IoT

sites the permanent access to the Internet is required. Also the

increasing of bandwidth is needed. It prevents the use of Cloud

technologies in real-time management systems and critical

appointments. Excessive traffic arising in the process of access to

remote resources causes increasing energy costs and the cost of access

to information.

The solution is to approach resources to their consumers.

Consequently, Fog computing [4-6], and then Dew computing [7] have

appeared.

The IoT feature is the importance of the level boundary interaction

of TCP/IP – oriented components and services with sensor networks

(SN) and individual devices – stationary, mobile, moveable (EDGE

computing). This level of interaction is difficult for formalizing because

of variety of devices types, interfaces, network protocols, numerous

vulnerabilities and strong requirements to power of IoT devices.

Acquiring necessary skills for building the boundary level of IoT is the

pressing challenge of training specialists in networking technologies.

Let's consider independent sensor networks SN1 (head node 1,

internal nodes 11, 12, 13 and boundary nodes BN1, BN12, BN13), SN2

(head node 2, internal nodes 21, 22, 23 and boundary nodes BN2, BN12,

BN23) , SN3 (head node 3, internal nodes 31, 32, 33 and boundary nodes

31. Prototyping and rapid development of IoT systems

508

BN3, BN13, BN23). In Fig. 31.2, double lines show internetwork data

flows. Let the data for node 21 come from the access point through the

boundary node BN1.

The chain is constructed: Data1 → BN1 → BN12 → 21. Data is

delivered from node 31 via the chain: 31 → 3 → BN23 → 2→ BN12 →

1 → BN1 → Data1. A shorter way, in the presence of BN13 is: 31 →

3→ BN13 → 1→ BN1 → Data1.

Fig. 31.2 – Combining of sensor networks with internetwork data

transport

 Networks SN1, SN2, SN3 can be used for data exchange
between the head and inner nodes and external networks via BN1,
BN2, BN3. The following conditions must be met: support for packet
switching in selected networks; sufficient length of network
messages for organizing data transfer over SN1-SN3 network
protocols. Data transfer rate in networks ensures an acceptable delay
in transmission of data packets; network traffic must have sufficient
redundancy to accommodate additional traffic; head nodes 1, 2 and 3
allow the extension of the basic set of functions; energy costs for
implementation of additional services should not extend beyond
established limits.

Sensor

22

BN2

2

21

23

BN23

BN12

BN13

BN3

33

3

BN1

11

1

12

13

31

32Actuator

Head node

Boundary network node

SN1

SN3

SN2Data1

Data2

Data3

31. Prototyping and rapid development of IoT systems

509

 A number of sources [6,8-10] describe the results of the
interaction of wired and wireless networks. The principal possibility
of reliable transportation of CAN-packets through the IP network is
shown. However, many sensor networks have too limited capabilities
of interfaces and protocols to implement additional functions. This
may require profound changes to the services of elements 1, 2 and 3,
will affect a number of existing protocols and will lead to the
emergence of new protocols that support prospective platforms of
sensory networks.

Thus, the problem of constructing a common information field

from independent heterogeneous networks is solved as follows.

Network interfaces are assumed by the boundary nodes (BN). There are

BN1, BN2, BN3 for external access to SN1, SN2, SN3 and there are BN12,

BN13, BN23 for the interaction of networks. Boundary nodes that

perform the function of gateways have the possibility of a simultaneous

presence in at least two networks between which interaction is

organized.

Each network controller through a network interface is related to

the nodes of its network - sensors and drives and it performs a set of

basic functions (services). Expansion of the set of functions gives

access to the network controller from the side of the boundary node,

which provides transport of data from one network to another.

Head nodes (network controllers) form requests (commands) to

sensors and drives receive response messages in accordance with the

internal logic of the network functioning. To provide communication

with the global network of all nodes, without exception, that generates

and receive data, it is advisable to use one entry point for a cluster of

nodes within one or more sensor networks [8, 9].

31.1.3 Types and structure of IoT devices

Devices on which IoT conditionally is under construction share on:

1. Simple attached device.

2. Intelligent device.

3. Border gateway.

The simple attached device generates data, performs instant

operations and carries out data transmission. As a rule, contains the

microcontroller with limited resources, built in by software, does not

31. Prototyping and rapid development of IoT systems

510

demand big costs of the equipment, provides basic functions of

connection, basic tools of safety. These are the most mass devices to

which specific, often contradictory requirements are imposed.

The intelligent device contains the microprocessor or SoC, the

operating system and considerable hardware resources (Ready IoT).

Provides data analysis on peripheral sections, support connectivity

across multiple networks, makes decisions and carries out local

calculations. Provides the maximum level of safety, controllability,

interaction and compatibility, reliable work of solutions, support of

cloud computing, the user interface and reduces data transmission cost.

The border gateway is the intelligent device for computing Edge with

the high level of safety, minimizes the problems connected with

interaction of the physical and virtual world and scaling of the IoT

systems.

IoT projects increasingly rely on existing out-of-the-box solutions.

Benefits [5]:

– quicker Time To Market;

– access to crucial skills;

– secure by design;

– optimized to work with wider ecosystem;

– scale with ease;

– enable a more end-to-end offering.

The choice for independent development usually is accepted for

simple and parts of intelligent devices. The structure of these devices is

presented in a general view on Fig. 31.3.

HMI

CPU

COMMs

ActuatorsSensors

SN, WSN
Internet

Cloud

Data input
Identification Display

Fig. 31.3 – Block scheme of device IoT

Kernel of devices (CPU) can be ready (Fig. 31.4) or independently

projectable modules on the basis of 8-32 bit microcontrollers [11-13].

31. Prototyping and rapid development of IoT systems

511

Fig. 31.4 – Kernel of IoT devices

Samples of sensors, indication and data entry, communication

means in modular or submodular execution for prototyping or creation

of end devices are widely presented at the market (Fig. 31.5).

Fig. 31.5 – Sensors and communication modules of IoT devices

31.2 Prototyping and rapid development principles

31.2.1 Main concepts

There are following six phases in every IoT based system

development life cycle model [14-16]:

 – requirement gathering and analysis;

 – design;

 – implementation or coding;

 – testing;

 – deployment;

 – maintenance.

Development of IoT of applications is the iterative process

allowing eliminating errors and mismatching to requirements at

different stages. Errors of initial stages of development are most

difficult eliminated.

Design of the IoT components of systems includes:

31. Prototyping and rapid development of IoT systems

512

1. Providing functional requirements:

– modeling for decision-making (Matlab, Simulink);

– distribution of functions between the IoT components of

systems, use of support from mobile devices (smartphones,

tablets and so forth);

– rational distribution of functions between equipment

rooms and software (minimization of hardware expenses);

– use of the previous developments.

2. Depreciation of components:

– rational choice of element base;

– use of open platforms.

– Reduction of weight and dimensional parameters:

– rational configuration;

– choice of cases of elements;

– replacement of bulky elements (power supply,

indication, management).

3. Decrease in terms of development of components:

– use of the previous developments, resources of

ecosystems;

– rational choice of development tools, compilers,

simulators.

4. Use of the previous developments.

5. Decrease in energy consumption (collecting energy for a power

supply).

6. Reliability augmentation (resistance to failures, power failures

and so forth).

7. Reduction of expenses on service.

8. Work in severe conditions of the environment.

9. Adaptation to new requirements.

10. Standardization of interfaces for Sensors, Actuators, network

and between network interactions.

11. Interaction with services Edge, Dew, Fog, Cloud.

12. Complex use of different platforms.

At different development stages focus of fast prototyping is

transferred to different components. Existence of lightweight IoT

middleware for rapid application development is important [16-18].

31. Prototyping and rapid development of IoT systems

513

31.2.2 Techniques for prototyping of IoT systems

Physical prototypes of simple devices can have virtual analogs, for

example, in the environment of Proteus (Fig. 31.6). Virtual devices

cannot reflect fully behavior of physical prototypes, but considerably

accelerate intermediate prototyping.

Availability of components of an ecosystem of Arduino,

Breadboards to fast assembly of prototypes cause their wide circulation,

especially in education [11, 12].

All largest vendors of microprocessors, microcontrollers, SoC,

communication means are guided by IoT and offer both end-to-end

solutions, and means of fast prototyping. Elements of compatibility

with shields of an ecosystem Arduino are often entered and in the same

format own payments are offered.

ON Semiconductor provides configurable, end-to-end, rapid

prototyping platforms for the Internet of Things [19]. These platforms

enable development of energy efficient solutions for smart

homes/buildings, smart cities, industrial IoT (Predictive Maintenance,

Asset Monitoring, etc.) and personal IoT (Wearables, activity monitors,

etc.).

 Fig. 31.6 – Means of prototyping of the simple IoT device

The IDK baseboard can be connected with different shields

depending on the required IoT application. The IDK baseboard allows

the user to create many types of IoT nodes and/or gateways depending

on which shields are used with the baseboard. Programing/configuring

the IDK requires the ON Semiconductor IDE software (Fig. 31.7).

31. Prototyping and rapid development of IoT systems

514

Fig. 31.7 – Hardware Setup

Based on the company’s highly sophisticated NCS36510 system-

on-chip (SoC) with a 32-bit ARM® Cortex® M3 processor core, it has

all the necessary hardware resources for constructing highly effective,

differentiated IoT systems, along with a comprehensive software

framework to attend to interfacing with the cloud (Fig. 31.8).

Fig. 31.8 – EVBUM2497/D IoT Prototyping Platforms

By attaching different shields to the IDK baseboard, a wealth of

connectivity (WiFi, Sigfox, Ethernet, ZigBee and Thread protocols,

etc.), sensor (motion, ambient light, proximity, heart rate, etc.) and

actuator (with stepper and brushless motor driving, plus the ability to

drive LED strings) options can be added to the system. This means that

31. Prototyping and rapid development of IoT systems

515

compromises do not have to be made, and the most suitable technology

can be chosen.

Offering a wide range of choices including configurable hardware,

multiple cloud connectivity, easy-to-use development software, and

application examples, these platforms reduce time-to-market and allow

rapid deployment of IoT-enabled products.

Designed for expert makers, entrepreneurs, and industrial IoT

companies, the Intel Edison module provides easier prototyping with a

fully open source hardware and software development environment. It

supports WiFi and BLE 4.0 connectivity (Fig. 31.9). This kit contains

eleven, selected Grove sensors and actuators. It can be used to track

indoor environment as well as to create smart-home applications [20].

Fig. 31.9 –Intel® Edison and Grove IoT Starter Kit

At production of single copies or the small IoT series of solutions

these platforms are final option.

31.2.3 Rapid Prototyping of Fragments of Internet of Things

The option of rapid prototyping of a network fragment using wired

and wireless access that realized with use a WiFi router shown in

Fig. 31.10.

31. Prototyping and rapid development of IoT systems

516

Fig. 31.10 – Rapid prototyping of the IoT network fragment

.

There are four Ethernet ports for connecting the end devices

(Ethernet MCU) and the local server, the WiFi access point for

connecting the IoT wireless devices: WiFi MCU (ESP 8266, Espressif

ESP 32, etc.), SoM Raspberry Pi, laptops, smartphones, tablet

computers. As the access point WiFi mobile devices GSM, DSL

modems and WiFi MCU can be used. This creates a variety of tasks for

building various Edge-level network configuration for building and

analyzing IoT fragments, mastering promising IoT platforms.

Simple Ethernet MCUs are built using Ethernet - SPI converters

Wiznet w5100, w5500, Microchip ENC28J60 and microcontroller

platforms [21]. Converters implement TCP/IP protocol in hardware.

Microcontrollers can be connected to sensors and actuators, perform the

functions of the boundary nodes of sensor networks, and exchange

information among themselves using built-in interfaces. Using multiple

routers and connected devices allows the local server to simulate

interaction at the boundary level of higher IoT levels (Fig. 31.11).

The prototype is the base for the development and research of

industrial automation systems, a smart home that is based on

technologies of the Internet of Things.

31. Prototyping and rapid development of IoT systems

517

Fig. 31.11 – Example of use of shield w5100 for remote control

via the Internet

.

31.2.4 Modeling of Access to WEB Resources

Along with rapid prototyping, an effective tool for developing and

debugging an application for the Internet of Things is the model

approach. Thus, the Proteus modeling and development environment

allows investigate the behavior of devices based on wired access

ENC28J60 to a local network and also based on emulating access to

web resources by intercepting TCP/IP packets.

Figure 5 shows the model view and the browser window with the

result of querying the IP address of the device. This simple and

affordable tool allows you to gain the skills of organizing an exchange

using HTTP pages in a network with the TCP/IP protocol. Limited

resources of microcontrollers and features of ENC28J60 allow using

highly shortened HTTP pages that can be placed in one Ethernet frame

and occupy the amount of available memory.

Proteus allows simulate the exchange between nodes of sensor

networks, and also the interaction of microcontrollers with digital and

analog sensors (temperature, humidity, pressure, approach, etc.),

various actuators (lighting, electric drives, relays, etc.), indicators,

alarms and various converters (Fig. 31.12).

31. Prototyping and rapid development of IoT systems

518

Fig. 31.12 – Modeling access to Web resources using the Proteus.

The program - a network analyzer for computer networks of

Ethernet - Wireshark allows the user to browse all traffic passing on

network connected with the modelled device [22]. The program is

distributed for free. On Fig. 31.13 analysis of a frame of exchange with

the browser and local control of data is given.

Fig. 31.13 – Analysis of the data field of Frame

31. Prototyping and rapid development of IoT systems

519

For convenience of search/viewing of information on the

necessary packets in the Wireshark program it is possible to filter the

taken packets to the IP address or port number.

31.3 Cases of IoT systems rapid development

A number of the practical tasks connected with development of

systems of collection of information on mobile platforms complicate,

and in some cases exclude debugging of hardware-software complexes

in the real environment. It is necessary to resort to use of models of

elements of interaction with networked environment, sensors and

actuation mechanisms.

Case1 contains process description of independent development

and prototyping of the attached IoT device for data collection of

measurements with use of language of the low level. Can be similarly

constructed some other IoT devices with tight restrictions on the used

resources.

Case2 shows difference of modern approach to fast design of the

device of monitoring of temperature with use of a cloud service on the

basis of Arduino ecosystem by Ready IoT.

31.3.1 Case 1. Collection of data on an angular position of the

mobile platform of road laboratory

For condition monitoring of roads the ROMDAS® system (ROad

Measurement Data Acquisition System) [23] is widely used and some

other systems. There is similar road laboratory ЛВС-3 [24] domestic

development on the basis of the car. ЛВС-3 contains a ruler from 18

laser sensors measuring a profile of a paving, HRDMI (High Resolution

Distance Measurement Instrument) – the odometer for measurement of

the passable way on the basis of an encoder, Digital inclinometer for

measurement of slope angles, navigation instruments and the camera of

video monitoring.

Each sensor creates a data flow with results of measurements

through certain distances. These distances are counted by means of

HRDMI which creates the pulse sequence with a frequency

proportional to motion speed. Data from sensors are taken off through a

certain number of div of impulses of HRDMI. Data in a special format

also remain in memory of the on-board computer for further processing

31. Prototyping and rapid development of IoT systems

520

(definition of places of damage of coverings, calculation of the IRI

index of flatness of roads). For creation of a profile of the road, it is

necessary to consider slope angles (pitch of X and a roll Y) platforms.

Data of an inclination on X, Y from Digital inclinometer are

transferred with a frequency of 10 Hz and have a 22-character text

format <D0... D21>:

<D0 ... D10> = “X=±xx.xxx“, <CR>, <LF>

<D11 ... D21>= “Y=±xx.xxx“, <CR>, <LF>

Example of data from an inclinometer:

"X=+12.345",$0D,$0A,"Y=-09.876",$0D,$0A

Received by X,Y will be transformed to 16-bit branching codes

(shortint) of values with scaling ratio 1000 and about one tetrad is

transferred in byte:

X=+12345= 0x3039, <0x#9, 0x#3, 0x#0, 0x#3> – для X=+12.345º

Y=-9876 = 0xD96C, <0x#C, 0x#6, 0x#9, 0x#D> – для Y=-09.876º

Here 8 tetrads of codes X and Y of each measurement are

numbered by 4-bit codes (#) synchronization (0,1,2, …, E,F,0.1.). New

measurement gets the future issue from a cyclic row - 0,1,2, …,

E,F,0.1. Data from other sensors have a similar format.

Interaction of hardware-software functional modules of the

channel of measurement of slope angles is given in Fig. 31.14.

Communication means and the software of the computer are

provided by multichannel data reception of measurements, forming of

the general data array with a binding to local maps for storage and

further processing and use of results in local and cloud services.

MCU – a set of hardware-software modules of conversion of

formats and temporary parameters of messages with results of

measurements.

MCU modules interact as follows.

1. Receiver in real time analyzes an asynchronous data flow from

Digital inclinometer.

2. Correct messages are used for conversion of values of corners

X, Y from a text format in binary branching code of shortint.

3. The template of the output message forms.

4. The moments of the beginning of transfer of the next day off

the message are defined.

5. Transmitter sends the 8th byte packets of the output message.

31. Prototyping and rapid development of IoT systems

521

Sensors

Digital
Inclinometer

HRDMI
PC

9600
22 Bytes

10 Hz

115200
 4 bytes
Fin/div

 Fin

Receiver
<X,Y>

Timing

Transmitter
<X, Y,num>

div

Enable

Sensors
other MCU

Fig. 31.14 – Functional modules of the channel of measurement of

slope angles

Functions can be implemented program, equipment rooms and

software and hardware tools of different microcontrollers. In the

considered channel of measurements widespread AVR ATmega162

microcontrollers with two transceivers were used [25].

Rapid software development

Considering intensity of exchange and implementation of

conversions language of the low level - the graphic Algorithm Builder

assembler is in real time selected. In comparison with the traditional

assembler time of development of the program is several times reduced.

Typical for analysis and forming of message bars at exchange in

IoT functional modules of the program:

• wait_Rx1 – reception of characters

• read_RxD1(value) – waiting of the character

• read_dec (value1, value2) – waiting of digit

• read_sign(signXY) – waiting of the sign of number

• OutMess – the output message

• Chr_Bin – branching code from a line

• messXY – the output message

• Timer_0_Overflow – synchronization of transmission of

messages

• USART0_DR_Empty – transfer of byte

• USART0_Transmit_Complete – the termination of a cycle of

transfer

31. Prototyping and rapid development of IoT systems

522

Fragment of programming module of reception of a corner of pitch

of X (Fig. 31.15) it is similar to the module of reception of angle of heel

of Y.

The macro of read_RxD1 (value) carries out check of the accepted

character and saves it in the buffer, and at an error reception of the

message is interrupted. So there is a syntactic control and ignoring of

incorrect messages.

How to check operation of the module of reception of the message

without field tests?

1. To replace function of waiting of input of the character

wait_Rx1 with function of reading test characters from in-

memory string

2. Input of the message from the virtual terminal Proteus.

3. To connect the Digital inclinometer emulator to a prototype.

Fig. 31.15 – Reception of values of slope angles of X, Y

31. Prototyping and rapid development of IoT systems

523

On the AVR microcontroller with asynchronous reception - the

transmitter (ATtiny2313, ATmega8535, ATmega8/168/328, etc.) can

implement programmatically the emulator of an inclinometer for

transfer of value of fixed values of X and Y, or a series of values

including incorrect.

For error trapping at consecutive exchange the additional bit of

control of parity is used. AVR transceivers of microcontrollers support

exchange of 9-bit codes, but the bit of Even Parity (Data bit 8) forms

and processed programmatically. On the Fig. 31.16, the fragment of the

program of data transmission with control of parity is shown. In the

same way sending for transfer to the PC form.

In addition to functions of the Digital inclinometer emulator it is

possible to assign function of emulation HRDMI to the microcontroller

– generation of impulses with a program-controlled frequency of Fin.

The internal timer counter having communication with an exit is for

this purpose used.

Fig. 31.16 – Transfer of the message with Even Parity bits

31. Prototyping and rapid development of IoT systems

524

Generation of impulses happens hardware. It is possible to use

management of frequency by means of external signals (Fig. 31.17). To

each signal there corresponds the code of control of the timer.

Fig. 31.17 – Fragment of the program of the choice

of Fin (80.5 - 1.0 KHz)

For creation of the device the microcontroller with two

asynchronous serial interfaces (USART0.1) is necessary for exchange

on RS232, the hardware pulse counter HRDMI. The model -

ATmega162 with clock rate 7.3728 MHz is selected. Setup in

Algorithm Builder of speed and operation modes of Receiver USART1

for communication with an inclinometer and Transmitter USART0 for

contact with the computer is shown on Fig. 31.18.

Fig. 31.18 – Setting mode USART1 and USART0

31. Prototyping and rapid development of IoT systems

525

For prototyping the developed earlier printed circuit board for

AT90S8515/ATmega8515/ATmega162 with sufficient number of

external connectors was used (Fig. 31.19).

Fig. 31.19 – Prototype of microcontroller devices

After modification of the connection diagram COM port it is used

for connection with the computer, the contact of Fin connects to

HRDMI, Fin/div - contact of a pilot, a0.2 – inputs for the jumpers

installation of the choice of div value. Indication of a power supply

(Led), the button of reset (Reset) and the connector of onboard

programming (ISP) is provided.

Fig. 31.20 – Function chart of the device

31. Prototyping and rapid development of IoT systems

526

To the Com port connector (J1) according to (Fig. 31.20 with can

be connected both an inclinometer (RxD1), and the computer (TxD0).

The prototype of the Digital inclinometer and HRDMI emulator is

constructed on the basis of a board with the ATmega8535

microcontroller ("Sensors" on Fig. 31.21).

Fig. 31.21 – The stand for debugging of the microcontroller device

Verification of signal outputs of the emulator is executed with use

of the logical analyzer. The analyzer has functions of record of time

diagrams of signals, measurements of temporary parameters and

decoding of sendings of standard interfaces (Fig. 31.22).

Fig. 31.22 – Signals emulator Digital inclinometer and HRDMI

Here from the emulator the line "X = 12.345\r\nY=-09.876\r\n"

and impulses with a frequency of 997 Hz arrives.

For control of data transmission from the device on the COM1

computer the Terminal v1.9 program with the settings shown on is used

Fig. 31.23. In a window of the terminal we receive the expected flow

of enumerated output messages. The prototype set onboard mobile road

laboratory passed rather long period of operation without additional

debugging in field conditions.

31. Prototyping and rapid development of IoT systems

527

Fig. 31.23 – Control of data transmission from MKU to the computer

31.3.2 Case 2. Monitoring of temperature with use of a cloud

service of Thingspeak and access on WiFi

On Thingspeak.com the channel for monitoring of temperature is

registered. It is required values of temperature from the digital

DS18b20 sensor periodically to send for storage and visualization to the

canal and to exercise control of receipt of data. There is a ready

decision for access to the Internet through WiFi – WeMos D1 R1 based

on SoC ESP8266-12E from Espressif [27, 28]. Necessary elements and

communications between them are shown on Fig. 31.24.

WiFi the microcontroller in WeMos D1 R1 works according to an

algorithm on Fig. 31.25.

Libraries of high-level functions:

#include <OneWire.h>

#include <DallasTemperature.h>

#include <ESP8266WiFi.h>

#include <WiFiClientSecure.h>

31. Prototyping and rapid development of IoT systems

528

Fig. 31.24 – Monitoring of temperature with use

of Thingspeak.com service

Parameters of WiFi network:

const char* ssid = " ssid ";

const char* password = " password ";

Attributes of access to thingspeak.com:

const char* host = "api.thingspeak.com";

const int httpsPort = 443;

Initialization of the sensor of temperature:

#define ONE_WIRE_BUS 2

OneWire oneWire(ONE_WIRE_BUS);

 DallasTemperature sensors(&oneWire);

Establishment of WiFi of connection:

 WiFiClientSecure client;

 WiFi.mode(WIFI_STA);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

In a basis cycle the value of temperature, sending to

thingspeak.com channel and control reading is read out (Fig. 31.26):

31. Prototyping and rapid development of IoT systems

529

void loop(void)

{

 …

 sensors.requestTemperatures();

 …

 sendData(sensors.getTempCByIndex(0));

 delay(1000);

}

Fig. 31.25 – Scheme of an algorithm of functioning of the device

Function of formation of URL of inquiries thingspeak.com for

sending data:

void sendData(float temp){

 if (!client.connect(host, httpsPort)) {

 Serial.println("connection failed"); return;

 }

String url = /update?api_key=ZS2KDK8HRD&field1=

"+String(temp);

client.print(String("GET ") + url + " HTTP/1.1\r\n" + "Host: "

+ host + "\r\n" + "User-Agent:

BuildFailureDetectorESP8266\r\n\r\n");

31. Prototyping and rapid development of IoT systems

530

Serial.println("Request sent to " + String(host));

while (client.connected()) {

 String line = client.readStringUntil('\n');

}

 String line = client.readStringUntil('\n');

}

Fig. 31.26 – Control of establishment of connection, sending and data

acquisition in the IDE Arduino terminal

In this example more difficult task, than in Case1 is solved much

more simply and quicker thanks to ready hardware and libraries of

high-level functions in the IDE Arduino coding environment.

31.4 Work related analysis

 Technologies of development and prototyping on the basis of an

ecosystem of Arduino and other platforms are used at many universities

of Ukraine – National Aerospace University "Kharkiv Aviation

Institute" [31], Zaporozhye National Technical University [32], Odessa

National Polytechnic University [33] and others. Here Circuits, Tina,

Fritzing, etc. is considered as physical prototyping and development of

printed circuit boards of devices, and use of computer circuitry models

in Proteus, Autodesk 123D.

In courses of many the US and EU countries universities, similar

platforms and technologies are used. For example:

31. Prototyping and rapid development of IoT systems

531

˗ course МЕ 2011 «Arduino Microcontroller» University of

Minnesota [34];

˗ course “Physical Computing with the Arduino” Middlesex

University London [35];

˗ course Stanford University Explore Courses - ARTSTUDI 130:

“Interactive Art: Making it with Arduino”, EE 392B: “Industrial

Internet of Things” [36];

˗ course Comp 366 / 450 “Microcontrollers - Building The

Internet of Things (IOT)” Loyola University Chicago [37].

Course of ECE 4760 "Designing with Microcontrollers" Cornell

University. School of Electrical and Computer Engineering is

constructed on use of 8-bit platforms with architecture of AVR, and in

the last years - 32-bit PIC32 platforms with architecture of MIPS. The

numerous projects completed by development of prototypes are

presented [38]. 10 best (according with opinion of authors) courses

Arduino & IoT & Certification are described on [39].

Conclusions and questions

Objects of the physical world can be connected by one or several

touch networks in about tens of sensors and actuation mechanisms and

programmable computing modules (the robot, the car, the house, the

machine, etc.). The state and behavior of object - "thing" is defined by

data flows in networks, and on Edge, Dew, Fog and Cloud levels of

global network are formed copies of his digital double (Digital twin).

Digital doubles have to reflect adequately a condition of physical

objects, and impact on doubles – to cause the corresponding reaction

physical objects and change of conditions of all copies of Digital twin

for representation to users. Development and prototyping of such IoT

components of systems and their deployment are very difficult. On the

other hand, sensor networks and elements of network interconnection

consist of rather simple devices with available development tools and

prototyping. Rapid development assumes availability of functionally

full range of elements cuts of fast assembly of devices rapid

developments of programs of their debugging. Classical approach -

development of the device with the program languages of the low level,

but with visually way programming is considered. The example of

modern approach on the basis of the open platform allows to implement

tel:2011

31. Prototyping and rapid development of IoT systems

532

quickly devices of monitoring and remote control with access to Web

services.

In order to better understand and assimilate the educational

material that is presented in this section, we invite you to answer the

following questions.

1. What is understood as the connected device?

2. What requirements are imposed to IoT devices?

3. In what difference between Edge, Dew, Fog and Cloud?

4. What function is performed by boundary knots of networks?

5. What stages are included by development of IoT of a system?

6. What enters a concept of the IoT platform?

7. What communication potential does the microcontroller have?

8. Call ready decisions for IoT.

9. What devices can perform the computing Edge functions?

10. How the device gets Internet access?

11. What potential does Proteus have?

12. What order of development of the microcontroller IoT device?

13. In what advantage of visual programming?

14. Why emulators are used?

15. Call means of fast prototyping of access to a cloud service?

 References
1. S. Kulkarni and S. Kulkarni, "Communication Models in Internet of

Things: A Survey", IJSTE - International Journal of Science Technology &

Engineering, vol. 3, no. 11, 2017.

2. R. Kienzler, "Digital twins and the Internet of Things", 2019.

https://developer.ibm.com/articles/ digital-twins-and-the-internet-of-things/.

[Accessed: 25- Jun- 2019].

3. A. Botta, W. Donato, V. Persico, A. Pescap. "Integration of Cloud

Computing and Internet of Things: a Survey". Journal of Future Generation

Computer Systems, pp. 1-54, 2015.

4. S. Yi, Z. Hao, Z. Qin, and Q. Li, Fog Computing: Platform and

Applications.Third IEEE Workshop on Hot Topics in Web Systems and

Technologies, pp. 73-78, 2015

5. Fog computing: fog and cloud along the Cloud-to-Thing continuum.

https://www.i-scoop.eu/internet-of-things-guide/fog-computing-cloud-internet-

things/ [Accessed 25 June. 2019].

6. N. Mohan, J. Kangasharju, "Edge-Fog Cloud: A Distributed Cloud for

Internet of Things Computations". https://www.cs.helsinki.fi/u/nmohan/

documents/2016/ EF_Nitinder_Jussi_UH_Final.pdf. [Accessed 25 June. 2019].

31. Prototyping and rapid development of IoT systems

533

7. P. Ray, "An Introduction to Dew Computing: Definition, Concept and

Implications".

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8114187. [Accessed

25 June. 2019].

8. S. Yuvraj, C. Jiannong, Z. Shigeng, Edge Mesh: A New Paradigm to

Enable Distributed Intelligence in Internet of Things. IEEE ACCESS, 2017, Vol.

5, pp.: 16441-16458

9. T. Higuchi, H. Yamaguchi, and T. Higashino, Mobile devices as an

infrastructure: A survey of opportunistic sensing technology. Journal of

Information Processing, 23(2):94—104, 2015.

10. Brandon Keith Maharrey, Alvin S. Lim and Song Gao, "Interconnection

between IP Networks and Wireless Sensor Networks”. International Journal of

Distributed Sensor Networks", December 4, 2012.

http://journals.sagepub.com/doi/full/ 10.1155/2012/ 567687. [Accessed 25 June.

2019].

11. Marco Schwartz, Internet of Things with Arduino Cookbook. Packt

Publishing, 2016.

12. P. Waher, IoT: Building Arduino-Based Projects (+code). Apress. 2016.

13. P. Xiao, Designing Embedded Systems and the Internet of Things (IoT)

with the ARM Mbed.. Wiley. 2018.

14. F. Pramudianto, "Rapid Application Development in the Internet of

Things: A Model-Based Approach", https://publications.rwth-aachen.de/record/

464316/files/ 464316.pdf [Accessed 25 June. 2019].

15. Padraig, S. and Lueth, K, "Guide to iot solution development", 2016.

[https://iot-analytics.com/wp/wp-content/uploads/2016/09/White-paper-Guide-to-

IoT-Solution-Development-September-2016-vf.pdf. [Accessed 25 June. 2019].

16. G. Guan, W. Dong, Y. Gao, K. Fu and Z. Cheng, "TinyLink: A Holistic

System for Rapid Development of IoT Applications". https://ieeexplore.ieee.org/

document/8116508. [Accessed 25 June. 2019].

17. K. Karvinen, T. Karvinen, IoT Rapid Prototyping Laboratory Setup.

International Journal of Engineering Education Vol. 34, No. 1, pp. 263–272, 2018

18. Configurable Rapid Prototyping Platform for The Internet of Things.

[Online] Available at: https://www.rs-online.com/ designspark/iotidk-kit.

[Accessed 25 June. 2019].

19. EVBUM2497/D. IoT Development Kit (IDK). Quick Start Guide.

https://www.mouser.com/ pdfdocs/ ONSemi_IDK_QuickStart.pdf. [Accessed 25

June. 2019].

20. Intel Edison and Grove IoT Starter Kit Powered by AWS.

http://wiki.seeedstudio.com/ Grove_IoT_Starter_Kits_Powered_by_AWS/.

[Accessed 25 June. 2019].

http://wiki.seeedstudio.com/Grove_IoT_Starter_Kits_Powered_by_AWS/

31. Prototyping and rapid development of IoT systems

534

21. B. Hammell, Connecting Arduino: Programming And Networking With

The Ethernet Shield (+source code). CreateSpace Independent Publishing

Platform, 2014.

22. S. Orgera, “How to Use Wireshark: A Complete Tutorial. Capture and

view the data traveling on your network”. https://www.lifewire.com/wireshark-

tutorial-4143298. Updated June 24, 2019. [Accessed 25 June. 2019].

23. ROMDAS System. https://romdas.com/ romdas-system.html [Accessed

25 June. 2019].

24. І. Кіяшко, Р. Смолянюк, Д. Новаковський, О. Пархоменко and О.

Мінаков, Діагностика стану покриттів новітніми ходовими дорожніми

лабораторіями: сучасний стан та перспективи розвитку, Автомобільні

дороги, no. 5(229), pp. 31-36, 2012.

25. Atmel AVR ATmega162 datasheet.

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-2513-8-bit-AVR-

Microntroller-ATmega162_Datasheet.pdf. [Accessed 25 June. 2019].

26. G. Gromov, "Algorithm Builder for AVR”, Atmel applications journal.

http://ww1.microchip.com/ downloads/en/DeviceDoc/avr_builder.pdf. [Accessed

25 June. 2019].

27. I. Hendry, Learn about the ESP8266 using Wemos shields. Amazon

Digital Services LLC . 2019.

28. M. R. Thakur, NodeMCU ESP8266 Communication Methods and

Protocols: Programming with Arduino IDE. Amazon Digital Services LLC .

2018.

29. Global High-Density Interconnect (HDI) PCB Market – Industry

Analysis and Forecast (2018-2026). https://www.maximizemarketresearch.com/

market-report/global-high-density-interconnect-hdi-pcb-market/30122/. [Accessed

25 June. 2019].

30. R. Marvin, “The Best Low-Code Development Platforms for 2019”.

https://www.pcmag.com/ roundup/ 353252/ the-best-low-code-development-

platforms. August 10, 2018. [Accessed 25 June. 2019].

31. https://khai.edu/en/, https://csn.khai.edu/.

32. http://www.zntu.edu.ua/zaporozhye-national-technical-university.

33. https://opu.ua/en.

34. http://www.me.umn.edu/courses/me2011/arduino/.

35. http://www.mdx.ac.uk/courses/summer-school/courses/ physical-

computing-with-the-arduino.

36. https://explorecourses.stanford.edu/.

37. http://cs.luc.edu/whonig/comp-366-488.

38. http://people.ece.cornell.edu/land/courses/ ece4760/FinalProjects/

39. https://digitaldefynd.com/best-arduino-iot-tutorial-certification-course-

training/

https://www.lifewire.com/scott-orgera-445539
https://www.pcmag.com/author-bio/rob-marvin

Анотація

535

УДК 62:004=111
І73
Рецензенты: Dr. Mario Fusani, ISTI-CNR, Піза, Італія

 Dr. Olga Kordas, KTH University, Стокгольм, Швеція
 Viktor Kordas, KTH University, Стокгольм, Швеція

І73 Інтернет речей для індустріальних і гуманітарних
застосунків. У трьох томах. Том 1. Основи і технології / За ред. В. С.
Харченка. - Міністерство освіти і науки України, Національний
аерокосмічний університет ХАІ, 2019. -547 с.

 ISBN 978-617-7361-82-3

Книга, що складається з трьох томів, містить теоретичні матеріали
для лекцій та тренінгів, розроблених в рамках проекту Internet of Things:
Emerging Curriculum for Industry and Human Applications / ALIOT,
573818-EPP-1-2016-1-UK-EPPKA2- CBHE-JP, 2016-2019, що
фінансується програмою ЄС ERASMUS +. Том 2 описує моделі, методи
моделювання та розробки для Інтернету речей (IoT). Книга складається з 4
частин для відповідних докторантських курсів: моделювання систем на
основі IoT (розділи 16-19), програмно-визначувані мережі і IoT (розділи
20-23), надійність і безпека IoT (розділи 24-27), розроблення і
впровадження систем на основі IoT (розділи 28-31).

Книга підготовлена українськими університетськими командами за
підтримки колег з академічних закладів країн ЄС, що входять до
консорціуму проекту ALIOT.

Книга призначена для магістрантів і аспірантів, які вивчають
технології IoT, програмну і комп'ютерну інженерію, комп'ютерні науки.
Може бути корисною для викладачів університетів і навчальних
центрів, дослідників і розробників систем IoT.

Рис.: 158. Посилань: 430. Таблиць: 45.
Ця робота захищена авторським правом. Всі права зарезервовані

авторами, незалежно від того, чи стосується це всього матеріалу або його
частини, зокрема права на переклади на інші мови, перевидання, повторне
використання ілюстрацій, декламацію, трансляцію, відтворення на
мікрофільмах або будь-яким іншим фізичним способом, а також передачу,
зберігання та електронну адаптацію за допомогою комп'ютерного
програмного забезпечення в будь-якому вигляді, або ж аналогічним або
іншим відомим способом, або ж таким, який буде розроблений в
майбутньому.

Анотації розділів

536

Анотації розділів

Розділ 16 присвячений опису загальних принципів

функціонування плати Ардуіно і симуляції її роботи. Показані

відмінності між фізичною та комп'ютерної симуляцією.

Описуються методи симуляції, які можуть бути застосовані для

плат Ардуіно. Наведено порівняльний аналіз різних програмних

засобів, які можуть бути використані для симуляції. Детально

описана робота з програмним комплексом протеус.

У розділі 17 розглядається трирівневе моделювання IoT/IoE

систем в їх структурі, поведінці і процесах синхронізації.

Запропоновано візуальний моделінг, моделювання і перевірку

архітектури, функціональності та часових особливостей IoT/IoE

систем і їх компонентів в статичному і динамічному режимах з

використанням UML діаграм, мереж Петрі, часової логіки,

відповідних методик та інструментів. Показано особливості

моделювання на основі еволюційних генетичних і мультиагентних

технологій.

При дослідженні надійності мікропрпоцессорних систем

часто застосовується математичний апарат Марковських і

напівмарковських моделей. Функціонування систем Інтернету

речей при певних прийнятих припущеннях може бути описано за

допомогою даних моделей. У розділі 18 наведено відомості про

особливості створення Марковських і напівмарковських

математичних моделей для опису процесу функціонування

системи Інтернету речей. Наведено і описані допущення при

розробці подібних моделей. Побудовано та досліджено

Марковські моделі готовності систем Інтернету речей.

Розділ 19 присвячено моделюванню взаімодій в IoT

системах. Авторами розглянуто архітектуру систем і загальні

шаблони для моделювання взаємодій. Так як методи і моделі, що

використовуються для проектування взаємодії залежать від

складності проектованих систем і класу вирішуваних завдань, в

розділі розглядаються чотири приклади, що використовують різні

підходи. У прикладі з віддаленої лабораторією GOLDi

Анотації розділів

537

демонструється застосування моделей FSM і Крипке, при

проектуванні системи голосової навігації для Смарт-Кампусу

використовувалися IFML моделі, а для моделювання кібер-

фізичних систем використовувалися «цифрові-двійники», що було

показано на прикладі лабораторії ISRT.

У розділі 20 розглядаються основи технології програмно-

конфігурованих мереж – базові принципи побудови та

функціонування, основоположні технології, архітектурні

особливості. Робиться також акцент на фундаментальних

відмінних рисах технології, історичних передумовах, що сприяли

виникненню останньої. Особливу увагу приділено огляду еволюції

специфікації OpenFlow, яка формує базис забезпечення

уніфікованого механізму взаємодії між контролером і

комутаторами.

У розділі 21 розглядаються питання програмування і

моделювання програмно-конфігурованих мереж. Аспекти

програмування розглянуто на прикладі мови програмування

Python. Наводяться та пояснюються базові команди

конфігурування топології мережі, зокрема команди, присвячені

вирішенню питань автоматизації названих дій. Приділяється увага

середовищу моделювання Mininet і відповідній графічній оболонці

MiniEdit.

У розділі 22 розглядаються питання пов’язані з низкою

дослідницьких проблем що виникають при реалізації специфічних

QoS моделей SDN шляхом розробки і впровадження алгоритмів і

підходів, які забезпечують ефективну роботу SDN в IoT.

Проаналізовано останні тенденції в використанні алгоритмів для

технології SDN з точки зору їх придатності для створення і

обслуговування великих магістральних мереж SDN / OpenFlow в

інфраструктурі IoT. Обговорюються перспективи прогнозування

продуктивності SDN з використанням методу об'єднання даних.

У розділі 23 аналізуються іноваційні, технологічні та бізнесові

причини появи та розвитку методології Development and

Operations (DevOps). Увага зосереджується на добре відомих

платформах AWS, MS Azure, Google Cloud та інш. Стисло

Анотації розділів

538

описуються особливості методології DevOps, пояснюється як і

завдяки чому вона розвивається. Обговорюються зв’язки та

взаємодія DevOps, програмно-визначуваних мереж Software

Defined Networks та Iнтернету pечей.

У розділі 24 розглядаються моделі функціональної та

інформаційної безпеки. У рамках концепції функціональної та

інформаційної безпеки запропоновано таксономію вимог,

атрибути та основи аналізу ризиків. Моделі функціональної

безпеки в основному кількісні, засновані на імовірнісному аналізі

значень показників. Моделі інформаційної безпеки в основному

якісні, засновані на аналізі загроз і сценаріїв атак.

В розділі 25 розглядаються вимоги до управління

функціональною та інформаційною безпекою, включаючи

управління персоналом, управління конфігурацією, вибір і

оцінювання інструментальних засобів, управління документацією,

а також оцінку безпеки. Докладно описується V-подібний

життєвий цикл функціональної та інформаційної безпеки,

включаючи трасування вимог. Розглянуто основні методи

верифікації, такі як огляд документів, статичний аналіз коду,

функціональне і структурне тестування.

Методологія Assurance Case розглядається в 26 розділі, як

цілісний підхід до інтеграції вимог і артефактів безпеки. Для цього

представлені основи Assurance Case, а також концепція і історія.

Для графічного представлення Assurance Case використовуються

напівформальні нотації, такі як «Мета, аргумент і підтвердження»

(CAE) і «Нотація структурованих цілей» (GSN). Assurance Case

для систем інтернету речей грунтується на врахуванні вимог до

інформаційної безпеки та енергоефективності.

У розділі 27 розглянуто основи технології блокчейн та

приклади її використання в середовищі Інтернет речей. Проведено

аналіз алгоритмів консенсусу, які використовуються в технології

блокчейн, і принципів забезпечення надійності та безпеки Інтернет

речей з використанням технології блокчейн. Виділено переваги та

існуючі проблеми інтеграції технологій блокчейн в Інтернет речей.

Вирішення питання безпеки на різних рівнях застосування IoT є

Анотації розділів

539

більш складною проблемою через обмежену продуктивність та

високу неоднорідність пристроїв.

У розділі 28 розглядається низка проблем, що пов’язані

розробкою архітектур IoT, архітектур пристроїв та інтеграції

базових компонент на основі IoT. Розглянуто ефективні підходи

до розробки для подолання основних проблем, що виникають в

процесі проектування та впровадження ефективного IoT рішення.

Обговорюються базові компоненти систем IoT, фази та результати

технічної стратегії IoT, а також критерії вибору для розгортання

платформ IoT.

У розділі 29 розглянуті моделі IoT пристроїв і технології для

обробки і передачі даних. У цьому розділі аналізуються основні

принципи побудови інформаційних моделей IoT пристроїв і

інструменти для їх створення, зокрема Eclipse Vorto. Також

досліджені протоколи мережевих з'єднань для IoT пристроїв. Крім

того, важливим компонентом IoT мережі є вибір технологій

обробки даних в IoT системах і методів управління і

прогнозування. Також розглянуті основні протоколи і стандарти

для передачі даних між IoT пристроями. Деяка увага приділяється

кібербезпеці в IoT.

У розділі 30 розглянуті інтелектуальні методи та підходи для

управління і навчання IoT систем. У цьому розділі аналізуються

типи та можливості IoT платформ, багатокритерійний підхід і м'які

обчислення для вибору IoT платформи. Також проаналізовано

концепцію мультиагентного підходу в IoT, зокрема, типи і

характеристики агентів, зв'язок агентів з зовнішнім середовищем і

технології передачі даних між агентами. Крім того, важливим

компонентом IoT мережі є вибір методів і підходів для навчання

IoT систем. Також розглядаються загальні принципи

міжмашинного навчання, системи, що самостійно навчаються і

нейронні мережі.

У розділі 31 розглянуті моделі інформаційної взаємодії

елементів систем IoT. Наведено порядок розробки і швидкого

прототипування пристроїв. Показані типові рішення для побудови

систем IoT, використання віртуальних пристроїв для розробки

Анотації розділів

540

програмного забезпечення. Наведені приклади розробки та

прототипування каналу вимірювань на основі малоресурсних

мікроконтролерів. Показано прискорення розробки пристрою IoT з

використанням сучасних відкритих платформ і бібліотек

високорівневих функцій.

Аннотация

541

УДК 62:004=111
І73
Рецензенты: Dr. Mario Fusani, ISTI-CNR, Пиза, Италия

 Dr. Olga Kordas, KTH University, Стокгольм, Швеция
 Viktor Kordas, KTH University, Стокгольм, Швеция

І73 Интернет вещей для индустриальных и гуманитарных
приложений. В трех томах. Том 1. Моделирование и разработка /
Под ред. В. С. Харченко. - Министерство Образования и науки Украины,
Национальный аэрокосмический университет ХАИ, 2019. - 547с.

 ISBN 978-617-7361-82-3

Книга, состоящая из трех томов, содержит теоретические материалы
для лекций и тренингов, разработанных в рамках проекта Internet of
Things: Emerging Curriculum for Industry and Human Applications /ALIOT,
573818-EPP-1-2016-1-UK-EPPKA2- CBHE-JP, 2016-2019, финансируемого
программой ЕС ERASMUS +. Том 2 описывает модели, методы
моделирования и разработки для Интернета вещей (IoT). Книга состоит из
4 частей для соответствующих докторантских курсов: моделирование
систем на основе IoT (разделы 16-19), программно-определяемые сети и
IoT (разделы 20-23), надежность и безопасность IoT (разделы 24-27),
разработка и внедрение систем на основе IoT (разделы 28-31).

Книга подготовлена украинскими университетскими командами при
поддержке коллег из академических организаций стран ЕС, входящих в
консорциум проекта ALIOT.

Книга предназначена для магистрантов и аспирантов, изучающих
технологии IoT, программную и компьютерную инженерию,
компьютерные науки. Может быть полезна для преподавателей
университетов и учебных центров, исследователей и разработчиков
систем IoT.

Рис .: 158. Ссылок: 430. Таблиц: 45.
Эта работа защищена авторским правом. Все права зарезервированы

авторами, независимо от того, касается ли это всего материала или его части, в
частности права на переводы на другие языки, переиздания, повторное
использование иллюстраций, декламацию, трансляцию, воспроизведения на
микрофильмах или любым другим физическим способом, а также передачу,
хранение и электронную адаптацию с помощью компьютерного программного
обеспечения в любом виде, либо же аналогичным или иным известным способом,
либо же таким, который будет разработан в будущем.

Аннотации разделов

542

Аннотации разделов

Раздел 16 посвящен описанию общих принципов

функционирования платы АРДУИНО и симуляции ее работы.

Показаны различия между физической и компьютерной

симуляцией. Описываются методы симуляции, которые могут

быть применены для плат АРДУИНО. Приведен сравнительный

анализ различных программных средств, которые могут быть

использованы для симуляции. Подробно описана работа с

программным комплексом ПРОТЕУС.

В разделе 17 рассматривается трехуровневое моделирование

IoT/IoE систем в их структуре, поведении и процессах

синхронизации. Предложено визуальное моделирование,

моделирование и проверка архитектуры, функциональности и

временных особенностей IoT/IoE систем и их компонентов в

статическом и динамическом режимах с использованием UML

диаграмм, сетей Петри, временной логики, соответствующих им

методик и инструментов. Показаны особенности моделирования

на основе эволюционных генетических и мультиагентных

технологий.

При исследовании надежности микропроцессорных систем

часто применяется математический аппарат Марковских и

полумарковских моделей. Функционирование систем интернета

вещей при определенных принятых допущениях может быть

описано с помощью данных моделей. В разделе 18 описаны

особенности создания Марковских и полумарковских

математических моделей для описания процесса

функционирования систем Интернета вещей. Приведены и

описаны допущения при разработке подобных моделей.

Построены и исследованы Марковские модели готовности систем

интернета вещей.

Раздел 19 посвящен моделированию взаимодействий в IoT

системах. Рассмотрена архитектура систем и общие шаблоны для

моделирования взаимодействий. Так как методы и модели

варьируются от сложности проектируемых систем и класса

решаемых задач, в главе рассматривается четыре примера,

Аннотации разделов

543

использующие различные подходы. В примере с удаленной

лабораторией GOLDi демонстрируется применение FSM и Крипке

моделей, при проектирвоании системы голосовой навигации для

Смарт-Кампуса использовались IFML модели, для моделирования

кибер-физических систем использовались «цифровые-двойники»,

что было показано на примере лаборатории ISRT.

В разделе 20 рассматриваются основы технологии

программно-конфигурируемых сетей – базовые принципы

построения и функционирования, основополагающие технологии,

архитектурные особенности. Акцент ставится также на

фундаментальных отличительных особенностях технологии,

исторических предпосылках, которые поспособствовали

возникновению последней. Отдельное внимание уделено обзору

эволюции спецификации OpenFlow, формирующей базис

обеспечения унифицированного механизма взаимодействия между

контроллером и коммутаторами.

В разделе 21 рассматриваются вопросы программирования и

моделирования программно-конфигурируемых сетей. Аспекты

программирования рассмотрены на примере языка

программирования Python. Приводятся и поясняются базовые

команды конфигурирования топологии сети, в частности команды,

предназначенные для решения вопросов автоматизации названых

действий. Внимание уделяется среде моделирования Mininet и

соответствующей графической оболочке MiniEdit.

В разделе 22 рассматривается ряд исследовательских

проблем, связанных с реализацией специфических моделей QoS

через SDN путем разработки и внедрения алгоритмов и подходов,

обеспечивающих эффективную работу SDN в IoT. Последние

тенденции в использовании алгоритмов для технологии SDN были

проанализированы с точки зрения их пригодности для создания и

обслуживания крупных магистральных сетей SDN / OpenFlow в

инфраструктуре IoT. Обсуждаются перспективы прогнозирования

производительности SDN с использованием метода объединения

данных.

В разделе 23 анализируются инновационные,

технологические и бизнес-причины появления и развития

Аннотации разделов

544

методологии Development and Operations (DevOps). Внимание

фокусируется на хорошо известных платформах AWS, MS Azure,

Google Cloud и других. Дается краткое введение в особенности

методологии DevOps, объясняется, как и благодаря чему она

развивается. Обсуждаются связи и взаимодействие DevOps,

программно-определяемых сетей Software Defined Networks и

Интернета вещей.

В разделе 24 рассмотрены модели функциональной и

информационной безопасности для систем интернета вещей. В

рамках концепции функциональной и информационной

безопасности предложены таксономия требований, атрибуты и

основы анализа рисков. Модели функциональной безопасности в

основном количественные, основанные на вероятностном анализе

значений показателей. Модели информационной безопасности в

основном качественные, основанные на анализе угроз и сценариев

связанных атак.

В разделе 25 рассматриваются требования к управлению

функциональной и информационной безопасностью, включая

управление персоналом, управление конфигурацией, выбор и

оценивание инструментальных средств, управление

документацией, а также оценку безопасности. Подробно

описывается V-образный жизненный цикл функциональной и

информационной безопасности, включая трассировку требований.

Рассмотрены основные методы верификации, такие как обзор

документов, статический анализ кода, функциональное и

структурное тестирование.

Методология Assurance Case рассматривается в 26 разделе,

как целостный подход к интеграции требований и артефактов

безопасности. Для этого представлены основы Assurance Case, а

также концепция и история. Для графического представления

Assurance Case используются полуформальные нотации, такие как

«Цель, аргумент и подтверждение» (CAE) и «Нотация

структурированных целей» (GSN). Assurance Case для систем

интернета вещей основывается на учете требований к

информационной безопасности и энергоэффективности.

Аннотации разделов

545

В разделе 27 рассмотрены основы технологии блокчейн и

примеры ее использования в Интернет вещей. Проведен анализ

алгоритмов консенсуса, используемых в технологии блокчейн, и

принципов обеспечения надежности и безопасности Интернет

вещей с использованием технологии блокчейн. Выделены

преимущества и существующие проблемы интеграции технологий

блокчейн в Интернет вещей. Решение вопроса безопасности на

различных уровнях применения IoT является более сложной

проблемой из-за ограниченной производительность и высокой

неоднородности устройств.

В разделе 28 рассматривается ряд исследовательских

проблем, связанных с разработкой IoT-архитектур, архитектур

устройств и системной интеграции на основе IoT. Рассмотрены

эффективные подходы к разработке для преодоления

существенных проблем при разработке и внедрении эффективного

решения IoT. Обсуждаются базовые компоненты систем IoT,

этапы и результаты технической стратегии IoT, а также критерии

выбора для развертывания платформ IoT.

В разделе 29 рассмотрены модели IoT устройств и

технологии для обработки и передачи данных. В этом разделе

анализируются основные принципы построения информационных

моделей IoT устройств и инструменты для их создания, в

частности Eclipse Vorto. Также исследованы протоколы сетевых

соединений для IoT устройств. Кроме того, важным компонентом

IoT сети является выбор технологий обработки данных в IoT

системах и методов управления и прогнозирования. Также

рассмотрены основные протоколы и стандарты для передачи

данных между IoT устройствами. Некоторое внимание уделяется

кибербезопасности в IoT.

В разделе 30 рассмотрены интеллектуальные методы и

подходы для управления и обучения IoT систем. В этой главе

анализируются типы и возможности IoT платформ,

многокритериальный подход и мягкие вычисления для выбора IoT

платформы. Также проанализирована концепция мультиагентного

подхода в IoT, в частности, типы и характеристики агентов, связь

агентов с внешней средой и технологии передачи данных между

Аннотации разделов

546

агентами. Кроме того, важным компонентом IoT сети является

выбор методов и подходов для обучения IoT систем. Также

рассматриваются общие принципы межмашинного обучения,

самообучающиеся системы и нейронные сети.

В разделе 31 рассмотрены модели информационного

взаимодействия элементов систем IoT. Приведен порядок

разработки и быстрого прототипирования устройств. Показаны

типовые решения для построения систем IoT, использование

виртуальных устройств для разработки программного

обеспечения. Приведены примеры разработки и прототипирования

канала измерений на основе малоресурсных микроконтроллеров.

Показано ускорение разработки устройства IoT с использованием

современных открытых платформ и библиотек высокоуровневых

функций.

Олександр Валентинович Дрозд, Олег Олександрович Ілляшенко,
Вячеслав Сергійович Харченко, Марина Олександрівна Колісник,

Галина Володимирівна Кондратенко, Юрій Пантелійович Кондратенко,
Олена Юріївна Маєвська, Дмитро Андрійович Маєвській, Олександр

Миколайович Мартинюк, Денис Сергійович Мазур, Максим
Володимирович Нестеров, Анатолій Павлович Плахтєєв, Вадим

Вікторович Шкарупило, Євген Вікторович Сіденко,
Інна Сергіївна Скарга-Бандурова, Володимир Володимирович Скляр,
Галина Володимирівна Табунщик, Микита Олександрович Таранов,

Артем Юрійович Великжанін, Дмитро Дмитрович Узун,
Юлія Олександрівна Узун, Наталія Георгіївна Яцків,

Василь Васильович Яцків, Георгій Андрійович Землянко

Інтернет речей для індустріальних і гуманітарних
застосувань.

Том 2. Моделювання і розроблення
(англійською мовою)
Редактор Харченко В.С.

Комп'ютерна верстка Ілляшенко О.О.

Зв. план, 2019
Підписаний до друку 22.08.2019

Формат 60x84 1/16. Папір офс. No2. Офс. друк.
Умов. друк. арк. 33,95. Обл.-вид. л. 34,19. Наклад 150 прим.

Замовлення 220819_2

Національний аерокосмічний університет ім. М. Є. Жуковського
"Харківський авіаційний інститут"

61070, Харків-70, вул. Чкалова, 17
http://www.khai.edu

Випускаючий редактор: ФОП Голембовська О.О.
03049, Київ, Повітрофлотський пр-кт, б. З, к. 32.

Свідоцтво про внесення суб’єкта видавничої справи до державного реєстру видавців,
виготовлювачів і розповсюджувачів видавничої продукції

серія ДК No 5120 від 08.06.2016 р.

Видавець: ТОВ «Видавництво «Юстон»
01034, м. Київ, вул.. О. Гончара, 36-а, тел.: +38 044 360 22 66

www.yuston.com.ua
Свідоцтво про внесення суб’єкта видавничої справи до державного реєстру видавців,

виготовлювачів і розповсюджувачів видавничої продукції
серія ДК No 497 від 09.09.2015 р.

	ALIOT_Multi-Book_Volume2_cover
	ALIOT_Multi-Book_Volume2
	ALIOT_Multi-book_Volume2

